Noise reduction in gravitational-wave data via deep learning

Type: Article

Publication Date: 2020-07-14

Citations: 18

DOI: https://doi.org/10.1103/physrevresearch.2.033066

Abstract

The authors present a method to extend the reach of gravitational wave detectors, which applies machine learning algorithms to the detector data and interprets data from on-site sensors monitoring the instrument to reduce the noise in the time-series due to instrumental artifacts and environmental contamination.

Locations

  • Physical Review Research - View - PDF
  • arXiv (Cornell University) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Efficient gravitational-wave glitch identification from environmental data through machine learning 2020 R. Colgan
K. R. Corley
Yenson Lau
I. Bartos
John Wright
Zsuzsa Márka
S. Márka
+ Enhancing gravitational-wave science with machine learning 2020 E. Cuoco
J. Powell
M. Cavaglià
K. Ackley
M. Bejger
C. Chatterjee
M. W. Coughlin
S. B. Coughlin
P. J. Easter
R. C. Essick
+ Deep Learning Techniques to make Gravitational Wave Detections from Weak Time-Series Data 2020 Yash Chauhan
+ Deep Learning model to make Gravitational Wave Detections from weak Time-Series Data 2020 Yash Chauhan
+ Machine Learning Applications in Gravitational Wave Astronomy 2024 Nikolaos Stergioulas
+ PDF Chat Applications of machine learning in gravitational wave research with current interferometric detectors 2024 E. Cuoco
M. Cavaglià
I. S. Heng
D. Keitel
C. Messenger
+ Reduction of transient noise artifacts in gravitational-wave data using deep learning 2021 K. Mogushi
+ PDF Chat Deep neural networks to enable real-time multimessenger astrophysics 2018 Daniel George
E. A. Huerta
+ PDF Chat Using time series to identify strongly-lensed gravitational waves with deep learning 2024 Arthur Offermans
Tjonnie G. F. Li
+ Detecting and Diagnosing Terrestrial Gravitational-Wave Mimics Through Feature Learning 2022 R. Colgan
Zsuzsa Márka
Jingkai Yan
I. Bartos
John Wright
S. Márka
+ PDF Chat Identifying and Mitigating Machine Learning Biases for the Gravitational-wave Detection Problem 2025 Niranjan Nagarajan
C. Messenger
+ PDF Chat Real-Time Gravitational Wave Science with Neural Posterior Estimation 2021 Maximilian Dax
Stephen Green
J. R. Gair
Jakob H. Macke
Alessandra Buonanno
Bernhard Schölkopf
+ PDF Chat Machine-learning nonstationary noise out of gravitational-wave detectors 2020 G. Vajente
Yuping Huang
M. Isi
J. C. Driggers
J. S. Kissel
M. J. Szczepańczyk
S. Vitale
+ PDF Chat Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset 2022 Yusuke Sakai
Y. Itoh
P. Jung
K. Kokeyama
C. Kozakai
Katsuko T. Nakahira
Shoichi Oshino
Yutaka Shikano
Hirotaka Takahashi
Takashi Uchiyama
+ PDF Chat Detecting and diagnosing terrestrial gravitational-wave mimics through feature learning 2023 R. Colgan
Zsuzsa Márka
Jingkai Yan
I. Bartos
John Wright
S. Márka
+ DeepSNR: A deep learning foundation for offline gravitational wave detection 2022 Michael Benjamin Andrews
M. Paulini
Luke Sellers
Alexey Bobrick
Gianni Martire
Haydn Vestal
+ iDQ: Statistical Inference of Non-Gaussian Noise with Auxiliary Degrees of Freedom in Gravitational-Wave Detectors 2020 R. C. Essick
P. Godwin
Chad Hanna
Lindy Blackburn
E. Katsavounidis
+ iDQ: Statistical Inference of Non-Gaussian Noise with Auxiliary Degrees of Freedom in Gravitational-Wave Detectors 2020 R. C. Essick
P. Godwin
Chad Hanna
Lindy Blackburn
E. Katsavounidis
+ iDQ: Statistical inference of non-gaussian noise with auxiliary degrees of freedom in gravitational-wave detectors 2020 R. C. Essick
P. Godwin
Chad Hanna
Lindy Blackburn
E. Katsavounidis
+ A characterization method for low-frequency environmental noise in LIGO 2022 G. Valdés
Adam Hines
E Andrea Nelson
Yanqi Zhang
Felipe Guzmán

Works That Cite This (15)

Action Title Year Authors
+ Matched filtering for gravitational wave detection without template bank driven by deep learning template prediction model bank 2023 C Ma
Sen Wang
Wei Wang
Z. Cao
+ PDF Chat Inference-Optimized AI and High Performance Computing for Gravitational Wave Detection at Scale 2022 Pranshu Chaturvedi
Asad Khan
Minyang Tian
E. A. Huerta
Huihuo Zheng
+ PDF Chat Site-selection criteria for the Einstein Telescope 2020 Florian Amann
Fabio Bonsignorio
T. Bulik
Henk Jan Bulten
Stefano Cuccuru
Alain Dassargues
R. DeSalvo
E. Fenyvesi
F. Fidecaro
I. Fiori
+ PDF Chat Subtracting glitches from gravitational-wave detector data during the third LIGO-Virgo observing run 2022 D. Davis
T. B. Littenberg
I. M. Romero-Shaw
M. Millhouse
J. McIver
F. Di Renzo
G. Ashton
+ Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources 2021 E. A. Huerta
Zhizhen Zhao
+ PDF Chat Detection of gravitational waves using Bayesian neural networks 2021 Yu-Chiung Lin
Jiun-Huei Proty Wu
+ PDF Chat Early warning of coalescing neutron-star and neutron-star-black-hole binaries from the nonstationary noise background using neural networks 2021 Hang Yu
R. X. Adhikari
R. M. Magee
S. Sachdev
Yanbei Chen
+ iDQ: Statistical inference of non-gaussian noise with auxiliary degrees of freedom in gravitational-wave detectors 2020 R. C. Essick
P. Godwin
Chad Hanna
Lindy Blackburn
E. Katsavounidis
+ PDF Chat Inference with finite time series: Observing the gravitational Universe through windows 2021 C. Talbot
E. Thrane
S. Biscoveanu
R. J. E. Smith
+ PDF Chat Interpretable AI forecasting for numerical relativity waveforms of quasicircular, spinning, nonprecessing binary black hole mergers 2022 Asad Khan
E. A. Huerta
Huihuo Zheng

Works Cited by This (33)

Action Title Year Authors
+ PDF Chat Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era 2016 S. Khan
S. Husa
Mark Hannam
F. Ohme
M. Pürrer
Xisco Jiménez Forteza
A. Bohé
+ PDF Chat Regression of environmental noise in LIGO data 2015 V. Tiwari
M. Drago
В. В. Фролов
S. Klimenko
G. Mitselmakher
V. Necula
G. A. Prodi
V. Re
F. Salemi
G. Vedovato
+ Fundamentals of adaptive filtering 2003 Ali H. Sayed
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
+ PDF Chat Global feed-forward vibration isolation in a km scale interferometer 2012 R. T. DeRosa
Jennifer C Driggers
Dani Atkinson
H. Miao
Valery Frolov
M. Landry
J. A. Giaime
R. X. Adhikari
+ PDF Chat Gravitational waves: Sources, detectors and searches 2012 K. Riles
+ PDF Chat Advanced Virgo: a second-generation interferometric gravitational wave detector 2014 F. Acernese
M. Agathos
K. Agatsuma
D. Aisa
N. Allemandou
A. Allocca
J Amarni
P. Astone
G. Balestri
G. Ballardin
+ PDF Chat Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms 2014 M. D. Hannam
P. Schmidt
A. Bohé
L. Haegel
S. Husa
F. Ohme
G. Pratten
M. Pürrer
+ PDF Chat Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise 2014 G. D. Meadors
K. Kawabe
K. Riles
+ PDF Chat Interferometer design of the KAGRA gravitational wave detector 2013 Y. Aso
Yuta Michimura
K. Somiya
Masaki Ando
O. Miyakawa
T. Sekiguchi
Daisuke Tatsumi
H. Yamamoto