Restriction of 3D arithmetic Laplace eigenfunctions to a plane

Type: Article

Publication Date: 2020-01-01

Citations: 3

DOI: https://doi.org/10.1214/20-ejp457

Abstract

We consider a random Gaussian ensemble of Laplace eigenfunctions on the 3D torus, and investigate the 1-dimensional Hausdorff measure (‘length’) of nodal intersections against a smooth 2-dimensional toral sub-manifold (‘surface’). A prior result of ours prescribed the expected length, universally proportional to the area of the reference surface, times the wavenumber, independent of the geometry. In this paper, for surfaces contained in a plane, we give an upper bound for the nodal intersection length variance, depending on the arithmetic properties of the plane. The bound is established via estimates on the number of lattice points in specific regions of the sphere.

Locations

  • Electronic Journal of Probability - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Infoscience (Ecole Polytechnique Fédérale de Lausanne) - View - PDF

Similar Works

Action Title Year Authors
+ Restriction of 3D arithmetic Laplace eigenfunctions to a plane 2019 Riccardo W. Maffucci
+ Restriction of 3D arithmetic Laplace eigenfunctions to a plane 2019 Riccardo W. Maffucci
+ PDF Chat Nodal Intersections for Arithmetic Random Waves Against a Surface 2019 Riccardo W. Maffucci
+ Nodal intersections for random waves on the 3-dimensional torus 2015 Zeév Rudnick
Igor Wigman
Nadav Yesha
+ Nodal intersections for random waves on the 3-dimensional torus 2015 Zeév Rudnick
Igor Wigman
Nadav Yesha
+ PDF Chat Nodal intersections for random waves on the 3-dimensional torus 2016 Zeév Rudnick
Igor Wigman
Nadav Yesha
+ Nodal intersections for random eigenfunctions on the torus 2014 Zeév Rudnick
Igor Wigman
+ Nodal intersections for random eigenfunctions on the torus 2014 Zeév Rudnick
Igor Wigman
+ PDF Chat Nodal intersections for random eigenfunctions on the torus 2016 Zeév Rudnick
Igor Wigman
+ Nodal length fluctuations for arithmetic random waves 2011 Manjunath Krishnapur
Pär Kurlberg
Igor Wigman
+ Nodal length fluctuations for arithmetic random waves 2011 Manjunath Krishnapur
Pär Kurlberg
Igor Wigman
+ Nodal intersections for random waves against a segment on the 3-dimensional torus 2017 Riccardo W. Maffucci
+ PDF Chat Nodal intersections of random eigenfunctions against a segment on the 2-dimensional torus 2016 Riccardo W. Maffucci
+ PDF Chat Nodal length fluctuations for arithmetic random waves 2013 Manjunath Krishnapur
Pär Kurlberg
Igor Wigman
+ Fluctuations of nodal sets on the 3-torus and general cancellation phenomena 2020 Massimo Notarnicola
+ Fluctuations of nodal sets on the 3-torus and general cancellation phenomena 2020 Massimo Notarnicola
+ Planck-scale distribution of nodal length of arithmetic random waves 2017 Jacques Benatar
Domenico Marinucci
Igor Wigman
+ PDF Chat Asymptotic distribution of nodal intersections for arithmetic random waves 2018 Maurizia Rossi
Igor Wigman
+ Planck-scale distribution of nodal length of arithmetic random waves 2017 Jacques Benatar
Domenico Marinucci
Igor Wigman
+ Nodal area distribution for arithmetic random waves 2017 Valentina Cammarota