Fourier Interpolation with Zeros of Zeta and L-Functions

Type: Article

Publication Date: 2022-11-10

Citations: 10

DOI: https://doi.org/10.1007/s00365-022-09599-w

Abstract

Abstract We construct a large family of Fourier interpolation bases for functions analytic in a strip symmetric about the real line. Interesting examples involve the nontrivial zeros of the Riemann zeta function and other L -functions. We establish a duality principle for Fourier interpolation bases in terms of certain kernels of general Dirichlet series with variable coefficients. Such kernels admit meromorphic continuation, with poles at a sequence dual to the sequence of frequencies of the Dirichlet series, and they satisfy a functional equation. Our construction of concrete bases relies on a strengthening of Knopp’s abundance principle for Dirichlet series with functional equations and a careful analysis of the associated Dirichlet series kernel, with coefficients arising from certain modular integrals for the theta group.

Locations

  • Constructive Approximation - View - PDF

Similar Works

Action Title Year Authors
+ Fourier interpolation with zeros of zeta and $L$-functions 2020 Andriy Bondarenko
Danylo Radchenko
Kristian Seip
+ Type-I contributions to the one and two level densities of quadratic Dirichlet $L$--functions over function fields. 2020 Hung M. Bui
Alexandra Florea
Jonathan P. Keating
+ Type-I contributions to the one and two level densities of quadratic Dirichlet $L$--functions over function fields 2020 Hung M. Bui
Alexandra Florea
Jonathan P. Keating
+ PDF Chat Type-I contributions to the one and two level densities of quadratic Dirichlet L–functions over function fields 2020 Hung M. Bui
Alexandra Florea
Jonathan P. Keating
+ On L-functions with poles satisfying Maass's functional equation 2010 Ravi Raghunathan
+ Low-lying zeros of quadratic Dirichlet $L$-functions: A transition in the Ratios Conjecture 2017 Daniel Fiorilli
James Parks
Anders Södergren
+ Low-lying zeros of quadratic Dirichlet $L$-functions: A transition in the Ratios Conjecture 2017 Daniel Fiorilli
James Parks
Anders Södergren
+ Distinct zeros of Dirichlet $L$-functions 2012 Xiaosheng Wu
+ Transcendental equations satisfied by the individual zeros of Riemann $\zeta$, Dirichlet and modular $L$-functions 2015 Guilherme França
André LeClair
+ PDF Chat Transcendental equations satisfied by the individual zeros of Riemann $\zeta$, Dirichlet and modular $L$-functions 2015 Guilherme França
André LeClair
+ PDF Chat Infinite product identities for $L$-functions 2005 Kirti Joshi
Ravi Raghunathan
+ PDF Chat Low-lying zeros of quadratic Dirichlet L-functions: A transition in the ratios conjecture 2018 Daniel Fiorilli
James Parks
Anders Södergren
+ On the zeros of Dirichlet L-functions 2013 Guilherme França
André LeClair
+ On the zeros of L-functions 2013 Guilherme França
André LeClair
+ PDF Chat On Fourier and Zeta(s) 2004 Jean-François Burnol
+ Zeta functions over zeros of general zeta and $L$-functions 2003 A. Voros
+ On the zeros of L-functions 2013 Guilherme França
André LeClair
+ On the Zeros of the Dirichlet L-Functions 1945 Carl Ludwig Siegel
+ Universality of $L$-Functions over function fields 2018 Julio Andrade
S. M. Gonek
+ PDF Chat Exceptional zeros, sieve parity, Goldbach 2022 John Friedlander
Henryk Iwaniec