A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications

Type: Article

Publication Date: 2020-04-28

Citations: 156

DOI: https://doi.org/10.1155/2020/9758378

Abstract

The ridge regression-type (Hoerl and Kennard, 1970) and Liu-type (Liu, 1993) estimators are consistently attractive shrinkage methods to reduce the effects of multicollinearity for both linear and nonlinear regression models. This paper proposes a new estimator to solve the multicollinearity problem for the linear regression model. Theory and simulation results show that, under some conditions, it performs better than both Liu and ridge regression estimators in the smaller MSE sense. Two real-life (chemical and economic) data are analyzed to illustrate the findings of the paper.

Locations

  • Scientifica - View - PDF
  • PubMed Central - View
  • Europe PMC (PubMed Central) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • PubMed - View

Similar Works

Action Title Year Authors
+ PDF Chat A New Modified Liu Ridge-Type Estimator for the Linear Regression Model: Simulation and Application 2022 Oladapo Olasunkanmi J
Owolabi Abiola T
Idowu Janet
Ayinde Kayode
+ Modified ridge‐type estimator to combat multicollinearity: Application to chemical data 2019 Adewale F. Lukman
Kayode Ayinde
Samuel Binuomote
Onate A. Clement
+ PDF Chat Modified One-Parameter Liu Estimator for the Linear Regression Model 2020 Adewale F. Lukman
Golam Kibria
Kayode Ayinde
Segun L. Jegede
+ The modified Liu-ridge-type estimator: a new class of biased estimators to address multicollinearity 2020 Muhammad Aslam
Shakeel Ahmad
+ PDF Chat A new class of efficient and debiased two-step shrinkage estimators: method and application 2021 Muhammad Qasim
Kristofer Månsson
Pär Sjölander
Golam Kibria
+ A new modified ridge-type estimator for the beta regression model: simulation and application 2021 Muhammad Nauman Akram
Muhammad Amin
Ahmed Elhassanein
Muhammad Aman Ullah
+ A new ridge type estimator and its performance for the linear regression model: Simulation and application 2024 Sohail Chand
Golam Kibria
+ PDF Chat Study of Some Kinds of Ridge Regression Estimators in Linear Regression Model 2020 Mustafa Nadhim Lattef
Mustafa I. Alheety
+ PDF Chat Combating Multicollinearity: A New Two-Parameter Approach 2023 Janet Iyabo Idowu
Olasunkanmi James Oladapo
Abiola T. Owolabi
Kayode Ayinde
Oyinlade AKİNMOJU
+ Comparison of Some Improved Estimators for Linear Regression Model under Different Conditions 2015 Smit Shah
+ A new hybrid estimator for linear regression model analysis: Computations and simulations 2022 Gladys Amos Shewa
Fidelis Ifeanyi Ugwuowo
+ Using Liu-Type Estimator to Combat Collinearity 2003 Kejian Liu
+ PDF Chat Some Modified Ridge Estimators for Handling the Multicollinearity Problem 2023 Nusrat Shaheen
Ismail Shah
Amani Almohaimeed
Sajid Ali
Hana N. Alqifari
+ PDF Chat New ridge estimators in the inverse Gaussian regression: Monte Carlo simulation and application to chemical data 2020 Muhammad Amin
Muhammad Qasim
Saima Afzal
Khalid Naveed
+ A new <scp>ridge‐type</scp> estimator for the linear regression model with correlated regressors 2022 Abiola T. Owolabi
Kayode Ayinde
Olusegun O. Alabi
+ Handling linear dependency in linear regression models: Almost unbiased modified ridge-type estimator 2024 Segun L. Jegede
Adewale F. Lukman
Ohud A. Alqasem
Maysaa Elmahi Abd Elwahab
Kayode Ayinde
Golam Kibria
Hezekiah Seun Adewinbi
+ PDF Chat Performance of some estimators for the multicollinear logistic regression model: theory, simulation, and applications 2024 Md Ariful Hoque
Golam Kibria
+ PDF Chat Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations 2021 Olugbenga Obadina
Adedayo F. Adedotun
O. A. Odusanya
+ PDF Chat A New Type Iterative Ridge Estimator: Applications and Performance Evaluations 2022 Aydın Karakoca
+ On the estimation of ridge penalty in linear regression: Simulation and application 2024 M. S. Khan
Amjad Ali
Muhammad Suhail
Eid Sadun Alotaibi
Nahaa E. Alsubaie

Works That Cite This (136)

Action Title Year Authors
+ A new ridge estimator for linear regression model with some challenging behavior of error term 2023 Maha Shabbir
Sohail Chand
Farhat Iqbal
+ PDF Chat Modeling and robust prediction of high heating values of municipal solid waste based on ultimate analysis 2020 Rotimi A. Ibikunle
Adewale F. Lukman
Isaac Femi Titiladunayo
Emmanuel A. Akeju
Samuel Olatunde Dahunsi
+ Jackknife Kibria-Lukman estimator for the beta regression model 2023 Tuba Koç
Emre Dünder
+ A New Ridge Type Estimator in the Logistic Regression Model with Correlated Regressors 2024 Oladapo Olasunkanmi J
Janet Iyabo Idowu
A. T. Owolabi
Kayode Ayinde
T. J. Adejumo
+ PDF Chat A new class of efficient and debiased two-step shrinkage estimators: method and application 2021 Muhammad Qasim
Kristofer Månsson
Pär Sjölander
Golam Kibria
+ Combining principal component and robust ridge estimators in linear regression model with multicollinearity and outlier 2022 Kingsley Chinedu Arum
Fidelis Ifeanyi Ugwuowo
+ PDF Chat A new estimator for the multicollinear Poisson regression model: simulation and application 2021 Adewale F. Lukman
Emmanuel T. Adewuyi
Kristofer Månsson
B. M. Golam Kibria
+ PDF Chat Combating the Multicollinearity in Bell Regression Model: Simulation and Application 2022 Gladys Amos Shewa
F. I. Ugwuowo
+ CGFLasso: Combating Multicollinearity using Domain Knowledge 2024 Soumya Sarkar
Nitin Singhal
Shweta Jain
Shashi Shekhar Jha
+ PDF Chat An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data 2023 Set Foong Ng