Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS

Type: Article

Publication Date: 2012-06-03

Citations: 108

DOI: https://doi.org/10.4171/jems/333

Abstract

We construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier–Lebesgue space {\mathcal F}L^{s,r}(\mathbb T) with s \ge \frac{1}{2} , 2 < r < 4 , (s-1)r <-1 and scaling like H^{\frac{1}{2}-\epsilon}(\mathbb T), for small \epsilon >0 . We also show the invariance of this measure.

Locations

  • arXiv (Cornell University) - View - PDF
  • Edinburgh Research Explorer (University of Edinburgh) - View - PDF
  • Edinburgh Research Explorer (University of Edinburgh) - View - PDF
  • DSpace@MIT (Massachusetts Institute of Technology) - View - PDF
  • ScholarWorks@UMassAmherst (University of Massachusetts Amherst) - View - PDF
  • Journal of the European Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS 2010 Andrea R. Nahmod
Tadahiro Oh
Luc Rey-Bellet
Gigliola Staffilani
+ Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS 2010 Andrea R. Nahmod
Tadahiro Oh
Luc Rey-Bellet
Gigliola Staffilani
+ INVARIANT WEIGHTED WIENER MEASURES AND ALMOST SURE GLOBAL WELL-POSEDNESS FOR THE PERIODIC DERIVATIVE NLS. 2010 Andrea R. Nahmod
Tadahiro Oh
Luc Rey-Bellet
Gigliola Staffilani
+ Invariant measures for the periodic derivative nonlinear Schrödinger equation 2018 Giuseppe Genovese
Renato Lucà
Daniele Valeri
+ PDF Chat Invariant measures for the periodic derivative nonlinear Schrödinger equation 2018 Giuseppe Genovese
Renato Lucà
Daniele Valeri
+ PDF Chat Invariant Measures for the DNLS Equation 2020 Renato Lucà
+ PDF Chat Periodic nonlinear Schrödinger equation and invariant measures 1994 Jean Bourgain
+ PDF Chat On the wellposedness of periodic nonlinear Schrödinger equations with white noise dispersion 2023 Gavin Stewart
+ Invariant measures for the periodic derivative nonlinear Schr\"odinger equation 2018 Giuseppe Genovese
Renato Lucà
Daniele Valeri
+ PDF Chat Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrödinger Equation 2020 Yu Deng
Andrea R. Nahmod
Haitian Yue
+ Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:msup></mml:math> 2017 Răzvan Moşincat
+ Invariant Gibbs measures and global Strong Solutions for periodic 2D nonlinear Schrödinger Equations. 2020 Andrea R. Nahmod
+ PDF Chat Low Regularity Local Well-Posedness of the Derivative Nonlinear Schrödinger Equation with Periodic Initial Data 2008 Axel Grünrock
Sebastian Herr
+ Invariant measures and global well-posedness for a fractional Schrödinger equation with Moser-Trudinger type nonlinearity 2021 Jean‐Baptiste Casteras
Léonard Monsaingeon
+ PDF Chat WIENER THEOREM FOR STUDYING ALMOST PERIODIC AT INFINITY FUNCTIONS 2019
+ Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two 2024 Yu Deng
Andrea R. Nahmod
Haitian Yue
+ Global well-posedness of the derivative nonlinear Schr\"odinger equation with periodic boundary condition in $H^{\frac12}$ 2016 Răzvan Moşincat
+ Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation 2015 Giuseppe Genovese
Renato Lucà
Daniele Valeri
+ On the wellposedness for periodic nonlinear Schrödinger equations with white noise dispersion 2022 Gavin Stewart
+ Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in $H^{\frac12}$ 2016 Răzvan Moşincat