Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
A Disentangling Invertible Interpretation Network for Explaining Latent Representations
Patrick Esser
,
Robin Rombach
,
Björn Ommer
Type:
Preprint
Publication Date:
2020-04-27
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
PDF
Chat
COMIX: Compositional Explanations using Prototypes
2025
Sarath Sivaprasad
Dmitry Kangin
Plamen Angelov
Mario Fritz
+
Interpreting Deep Visual Representations via Network Dissection
2017
Bolei Zhou
David Bau
Aude Oliva
Antonio Torralba
+
PDF
Chat
Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
2024
Jayneel Parekh
Quentin Bouniot
Pavlo Mozharovskyi
Alasdair Newson
Florence d’Alché–Buc
+
PDF
Chat
Faithful and Plausible Natural Language Explanations for Image Classification: A Pipeline Approach
2024
Adam Wojciechowski
Mateusz Lango
Ondřej Dušek
+
PDF
Chat
Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention
2022
Yu Yang
Seungbae Kim
Jungseock Joo
+
PDF
Chat
Aligning Visual and Semantic Interpretability through Visually Grounded Concept Bottleneck Models
2024
Patrick Knab
Katharina Prasse
Sascha Marton
Christian Bartelt
Margret Keuper
+
Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks
2024
Tanmay Garg
Deepika Vemuri
Vineeth N Balasubramanian
+
PDF
Chat
Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG)
2024
Yearim Kim
Sangyu Han
Sangbum Han
Nojun Kwak
+
PDF
Chat
Unsupervised Interpretable Basis Extraction for Concept-Based Visual Explanations
2023
Alexandros Doumanoglou
Stylianos Asteriadis
Dimitrios Zarpalas
+
Unsupervised Interpretable Basis Extraction for Concept-Based Visual Explanations
2023
Alexandros Doumanoglou
Stylianos Asteriadis
Dimitrios Zarpalas
+
Compositional Explanations of Neurons
2020
Jesse Mu
Jacob Andreas
+
Hierarchical Semantic Tree Concept Whitening for Interpretable Image Classification
2023
Haixing Dai
Lu Zhang
Lin Zhao
Zihao Wu
Zhengliang Liu
David Liu
Xiaowei Yu
Yanjun Lyu
Changying Li
Ninghao Liu
+
Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention
2022
Yu Yang
Seungbae Kim
Jungseock Joo
+
Identifying Interpretable Subspaces in Image Representations
2023
Neha Kalibhat
Shweta Bhardwaj
Bayan Bruss
Hamed Firooz
Maziar Sanjabi
Soheil Feizi
+
PDF
Chat
Generating visual explanations from deep networks using implicit neural representations
2025
Michał Byra
Henrik Skibbe
+
Network Dissection: Quantifying Interpretability of Deep Visual Representations
2017
David Bau
Bolei Zhou
Aditya Khosla
Aude Oliva
Antonio Torralba
+
Network Dissection: Quantifying Interpretability of Deep Visual Representations
2017
David Bau
Bolei Zhou
Aditya Khosla
Aude Oliva
Antonio Torralba
+
PDF
Chat
Network Dissection: Quantifying Interpretability of Deep Visual Representations
2017
David Bau
Bolei Zhou
Aditya Khosla
Aude Oliva
Antonio Torralba
+
PDF
Chat
Bi-ICE: An Inner Interpretable Framework for Image Classification via Bi-directional Interactions between Concept and Input Embeddings
2024
Jinyung Hong
Yearim Kim
Keun Hee Park
Sangyu Han
Nojun Kwak
Theodore P. Pavlic
+
Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs
2020
Robin Rombach
Patrick Esser
Björn Ommer
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (36)
Action
Title
Year
Authors
+
NICE: Non-linear Independent Components Estimation
2014
Laurent Dinh
David Krueger
Yoshua Bengio
+
Understanding Neural Networks Through Deep Visualization
2015
Jason Yosinski
Jeff Clune
Anh Mai Nguyen
Thomas J. Fuchs
Hod Lipson
+
PDF
Chat
Deep Learning Face Attributes in the Wild
2015
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
+
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
2014
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Murphy
Alan Yuille
+
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
2015
Alec Radford
Luke Metz
Soumith Chintala
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+
Explaining nonlinear classification decisions with deep Taylor decomposition
2016
Grégoire Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus‐Robert Müller
+
Density estimation using Real NVP
2016
Laurent Dinh
Jascha Sohl‐Dickstein
Samy Bengio
+
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
2016
Anh Son Nguyen
Alexey Dosovitskiy
Jason Yosinski
Thomas Brox
Jeff Clune
+
PDF
Chat
Fashion Landmark Detection in the Wild
2016
Ziwei Liu
Sijie Yan
Ping Luo
Xiaogang Wang
Xiaoou Tang