A Disentangling Invertible Interpretation Network for Explaining Latent Representations

Type: Preprint

Publication Date: 2020-04-27

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ PDF Chat COMIX: Compositional Explanations using Prototypes 2025 Sarath Sivaprasad
Dmitry Kangin
Plamen Angelov
Mario Fritz
+ Interpreting Deep Visual Representations via Network Dissection 2017 Bolei Zhou
David Bau
Aude Oliva
Antonio Torralba
+ PDF Chat Restyling Unsupervised Concept Based Interpretable Networks with Generative Models 2024 Jayneel Parekh
Quentin Bouniot
Pavlo Mozharovskyi
Alasdair Newson
Florence d’Alché–Buc
+ PDF Chat Faithful and Plausible Natural Language Explanations for Image Classification: A Pipeline Approach 2024 Adam Wojciechowski
Mateusz Lango
Ondřej Dušek
+ PDF Chat Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention 2022 Yu Yang
Seungbae Kim
Jungseock Joo
+ PDF Chat Aligning Visual and Semantic Interpretability through Visually Grounded Concept Bottleneck Models 2024 Patrick Knab
Katharina Prasse
Sascha Marton
Christian Bartelt
Margret Keuper
+ Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks 2024 Tanmay Garg
Deepika Vemuri
Vineeth N Balasubramanian
+ PDF Chat Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG) 2024 Yearim Kim
Sangyu Han
Sangbum Han
Nojun Kwak
+ PDF Chat Unsupervised Interpretable Basis Extraction for Concept-Based Visual Explanations 2023 Alexandros Doumanoglou
Stylianos Asteriadis
Dimitrios Zarpalas
+ Unsupervised Interpretable Basis Extraction for Concept-Based Visual Explanations 2023 Alexandros Doumanoglou
Stylianos Asteriadis
Dimitrios Zarpalas
+ Compositional Explanations of Neurons 2020 Jesse Mu
Jacob Andreas
+ Hierarchical Semantic Tree Concept Whitening for Interpretable Image Classification 2023 Haixing Dai
Lu Zhang
Lin Zhao
Zihao Wu
Zhengliang Liu
David Liu
Xiaowei Yu
Yanjun Lyu
Changying Li
Ninghao Liu
+ Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention 2022 Yu Yang
Seungbae Kim
Jungseock Joo
+ Identifying Interpretable Subspaces in Image Representations 2023 Neha Kalibhat
Shweta Bhardwaj
Bayan Bruss
Hamed Firooz
Maziar Sanjabi
Soheil Feizi
+ PDF Chat Generating visual explanations from deep networks using implicit neural representations 2025 Michał Byra
Henrik Skibbe
+ Network Dissection: Quantifying Interpretability of Deep Visual Representations 2017 David Bau
Bolei Zhou
Aditya Khosla
Aude Oliva
Antonio Torralba
+ Network Dissection: Quantifying Interpretability of Deep Visual Representations 2017 David Bau
Bolei Zhou
Aditya Khosla
Aude Oliva
Antonio Torralba
+ PDF Chat Network Dissection: Quantifying Interpretability of Deep Visual Representations 2017 David Bau
Bolei Zhou
Aditya Khosla
Aude Oliva
Antonio Torralba
+ PDF Chat Bi-ICE: An Inner Interpretable Framework for Image Classification via Bi-directional Interactions between Concept and Input Embeddings 2024 Jinyung Hong
Yearim Kim
Keun Hee Park
Sangyu Han
Nojun Kwak
Theodore P. Pavlic
+ Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs 2020 Robin Rombach
Patrick Esser
Björn Ommer

Works That Cite This (0)

Action Title Year Authors