Nontangential Estimates on Layer Potentials and the Neumann Problem for Higher-Order Elliptic Equations

Type: Article

Publication Date: 2020-02-27

Citations: 2

DOI: https://doi.org/10.1093/imrn/rnaa051

Abstract

Abstract We solve the Neumann problem, with nontangential estimates, for higher-order divergence form elliptic operators with variable $t$-independent coefficients. Our results are accompanied by nontangential estimates on higher-order layer potentials.

Locations

  • International Mathematics Research Notices - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Nontangential estimates on layer potentials and the Neumann problem for higher order elliptic equations 2018 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Nontangential estimates on layer potentials and the Neumann problem for higher order elliptic equations 2018 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Square function estimates on layer potentials for higher-order elliptic equations 2015 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Square function estimates on layer potentials for higher-order elliptic equations 2015 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ The Ẇ−1,p Neumann problem for higher order elliptic equations 2021 Ariel Barton
+ The $L^p$ Neumann problem for higher order elliptic equations 2020 Ariel Barton
+ The $L^p$ Neumann problem for higher order elliptic equations 2020 Ariel Barton
+ PDF Chat Square function estimates on layer potentials for higher‐order elliptic equations 2017 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ The $\dot W^{-1,p}$ Neumann problem for higher order elliptic equations 2019 Ariel Barton
+ The $\dot W^{-1,p}$ Neumann problem for higher order elliptic equations 2019 Ariel Barton
+ PDF Chat Bounds on layer potentials with rough inputs for higher order elliptic equations 2019 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Layer potentials and boundary value problems for elliptic equations with complex $L^{\infty}$ coefficients satisfying the small Carleson measure norm condition 2013 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ Analyticity of layer potentials and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> solvability of boundary value problems for divergence form elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math> coefficients 2010 M. Angeles Alfonseca
Pascal Auscher
Andreas Axelsson
Steve Hofmann
Seick Kim
+ Layer potentials and boundary value problems for elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math> coefficients satisfying the small Carleson measure norm condition 2014 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ Mapping Properties of Layer Potentials Associated with Higher-Order Elliptic Operators in Lipschitz Domains 2010 Irina Mitrea
+ Critical Perturbations for Second Order Elliptic Operators. Part II: Non-tangential maximal function estimates 2023 Simon Bortz
Steve Hofmann
José Luis Luna García
Svitlana Mayboroda
Bruno Poggi
+ Boundedness and Invertibility of Layer Potential Operators 2022 Juan MarĂ­n
José María Martell
Dorina Mitrea
Irina Mitrea
Marius Mitrea
+ Higher regularity in the classical layer potential theory for Lipschitz domains 2009 Tatyana Shaposhnikova
+ PDF Chat Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients 2016 Alejandro J. Castro
Kaj Nyström
Olow Sande
+ Perturbation of well-posedness and layer potentials for higher-order elliptic systems with rough coefficients 2016 Ariel Barton