THE DE BRUIJN–NEWMAN CONSTANT IS NON-NEGATIVE

Type: Article

Publication Date: 2020-01-01

Citations: 23

DOI: https://doi.org/10.1017/fmp.2020.6

Abstract

For each $t\in \mathbb{R}$ , we define the entire function $$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$$ where $\unicode[STIX]{x1D6F7}$ is the super-exponentially decaying function $$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$$ Newman showed that there exists a finite constant $\unicode[STIX]{x1D6EC}$ (the de Bruijn–Newman constant ) such that the zeros of $H_{t}$ are all real precisely when $t\geqslant \unicode[STIX]{x1D6EC}$ . The Riemann hypothesis is equivalent to the assertion $\unicode[STIX]{x1D6EC}\leqslant 0$ , and Newman conjectured the complementary bound $\unicode[STIX]{x1D6EC}\geqslant 0$ . In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $\unicode[STIX]{x1D6EC}<0$ and then analyzing the dynamics of zeros of $H_{t}$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $H_{t}$ in the range $\unicode[STIX]{x1D6EC}<t\leqslant 0$ , until one establishes that the zeros of $H_{0}$ are in local equilibrium, in the sense that they locally behave (on average) as if they were equally spaced in an arithmetic progression, with gaps staying close to the global average gap size. But this latter claim is inconsistent with the known results about the local distribution of zeros of the Riemann zeta function, such as the pair correlation estimates of Montgomery.

Locations

  • Forum of Mathematics Pi - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Forum of Mathematics Pi - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Forum of Mathematics Pi - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The De Bruijn-Newman constant is non-negative 2018 Brad Rodgers
Terence Tao
+ On the de Bruijn–Newman constant 2009 Haseo Ki
Young-One Kim
Jungseob Lee
+ Analysis of the De Bruijn--Newman Constant and Its Implications for the Riemann Hypothesis 2024 Raghu Raj Shree
+ A Lower Bound for the de Bruijn-Newman Constant Λ. II 1992 Timothy S. Norfolk
Arden Ruttan
R. S. Varga
+ Constants of de Bruijn-Newman type in analytic number theory and statistical physics 2019 Charles M. Newman
Wei Wu
+ A low bound for the de Bruijn-newman constant ? 1987 George Csordás
Timothy S. Norfolk
R. S. Varga
+ A New Proof of Newman's Conjecture and a Generalization 2020 Alexander Dobner
+ PDF Constants of de Bruijn–Newman type in analytic number theory and statistical physics 2019 Charles M. Newman
Wei Wu
+ Effective approximation of heat flow evolution of the Riemann $ξ$ function, and a new upper bound for the de Bruijn-Newman constant 2019 D. H. J. Polymath
+ A new lower bound for the de Bruijn-Newman constant 1990 H. J. J. te Riele
+ An improved lower bound for the de Bruijn-Newman constant 2011 Yannick Saouter
Xavier Gourdon
Patrick Demichel
+ PDF Erratum: A remark on Neuwirth and Newman’s paper: ‘‘Positive $H^{1/2}$\ functions are constants” 1970 Shinji Yamashita
+ PDF Chat Effective approximation of heat flow evolution of the Riemann $$\xi $$ function, and a new upper bound for the de Bruijn–Newman constant 2019 D. H. J. Polymath
+ Effective approximation of heat flow evolution of the Riemann $\xi$ function, and a new upper bound for the de Bruijn-Newman constant 2019 D. H. J. Polymath
+ PHENOMENON OF MOSER-NEWMAN FOR NUMBERS WITHOUT SQUARE FACTOR 2015 Christian Mauduit
Carlos Gustavo Moreira
+ Euler's Square Root Laws for Negative Numbers 2020 Dave Ruch
+ PDF Some exact values of the Harborth constant and its plus-minus weighted analogue 2013 Luz Elimar Marchan
Óscar Ordaz
Dennys Ramos
Wolfgang Schmid
+ A Generalization of Newman’s Result on the Zeros of Fourier Transforms 2004 Haseo Ki
Young-One Kim
+ Phénomène de Moser-Newman pour les nombres sans facteur carré 2015 Christian Mauduit
Carlos Gustavo Moreira
+ Nonsymbolic Number 2018 Camilla Gilmore
Silke M. Göbel
Matthew Inglis