THE KERNEL OF DIRAC OPERATORS ON ${\mathbb S}^3$ AND ℝ<sup>3</sup>

Type: Review

Publication Date: 2001-10-01

Citations: 38

DOI: https://doi.org/10.1142/s0129055x01000983

Abstract

In this paper we describe an intrinsically geometric way of producing magnetic fields on $\S^3$ and $\R^3$ for which the corresponding Dirac operators have a non-trivial kernel. In many cases we are able to compute the dimension of the kernel. In particular we can give examples where the kernel has any given dimension. This generalizes the examples of Loss and Yau (Commun. Math. Phys. 104 (1986) 283-290).

Locations

  • Reviews in Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On the kernel of SpinC Dirac operators on S 3 and R 3 2000 László Erdős
Jan Philip Solovej
+ Dirac flow on the 3-sphere 2016 E.G. Malkovich
+ PDF Chat Dirac manifolds 1990 Theodore James Courant
+ The Dirac operator 1998 Giampiero Esposito
+ Résonances et diffusion pour les opérateurs de Dirac et de Schrödinger magnétique 2008 Abdallah Khochman
+ A brief introduction to Dirac manifolds 2011 Henrique Bursztyn
+ PDF Chat Tricks to implement the overlap Dirac operator 2000 H Neuberger
+ Geometry, spinors and applications 2000 D. J. Hurley
Michael A. Vandyck
+ The Dirac Operator 2013 Naiara Arrizabalaga
+ Dirac Structures 2016 M. V. Hariharan
S. D. Varwandkar
Pragati Gupta
+ The Transmutation Operators Relating to a Dunkl Type Operator on $${\mathbb{R}}$$ R and Their Positivity 2014 Khalifa Trimèche
+ Dirac Spinors 1991 John M. Stewart
+ Geometry of Dirac Operators 2016 Babak Beheshti Vadeqan
+ PDF Chat A brief introduction to Dirac manifolds 2013 Henrique Bursztyn
+ Dirac algebras containing the distributions 1978 Elemér E Rosinger
+ The Dirac Notation 2007 Maurizio Dapor
+ PDF Chat A toy model for higher spin Dirac operators 2010 David Eelbode
Liesbet Van de Voorde
+ Spin Structures and Dirac Operator 2024
+ Spin Structures and Dirac Operator 2012
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="normal">Spin</mml:mi><mml:mi>c</mml:mi></mml:msup></mml:math>-structures and Dirac operators on contact manifolds 2005 Robert Petit