Type: Article
Publication Date: 2020-04-01
Citations: 2
DOI: https://doi.org/10.1112/mtk.12021
For integer n ⩾ 1 and real z ⩾ 1 , define M ( n , z ) : = ∑ d | n , d ⩽ z μ ( d ) , where μ denotes the Möbius function. Put L ( y ) : = exp { ( log y ) 3 / 5 / ( log 2 y ) 1 / 5 } ( y ⩾ 3 ) . We show that, for a suitable, explicit constant L > 0 and some constant c > 0 , we have S ( x , z ) = L x + O ( x / L ( 3 ξ ) c ) uniformly for x ⩾ 1 , ξ ⩽ z ⩽ x / ξ .
Action | Title | Year | Authors |
---|---|---|---|
+ | Large Subsums of the Möbius Function | 2023 |
Imre Z. Ruzsa |
+ | On a logarithmic sum related to a natural quadratic sieve | 2020 |
Sebastian Zuniga Alterman |