Strong rational Diophantine <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e20" altimg="si9.svg"><mml:mrow><mml:mi>D</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>q</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>-triples

Type: Article

Publication Date: 2020-04-02

Citations: 3

DOI: https://doi.org/10.1016/j.indag.2020.03.007

Locations

  • Indagationes Mathematicae - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Strong Diophantine Triples 2008 Andrej Dujella
Vinko Petričcević
+ PDF Chat Strong Eulerian triples 2018 Andrej Dujella
Ivica Gusić
Vinko Petričević
Petra Tadić
+ PDF Chat Rational Diophantine sextuples with strong pair 2024 Andrej Dujella
Matija Kazalicki
Vinko Petričević
+ Rational Diophantine sextuples with strong pair 2025 Andrej Dujella
Matija Kazalicki
Vinko Petričević
+ Rational Diophantine sextuples with square denominators 2019 Andrej Dujella
Matija Kazalicki
Vinko Petričević
+ The Diophantine equation 2š‘„Ā²+1=3āæ 2003 Ming-Guang Leu
Guan-Wei Li
+ There is no Diophantine quintuple 2018 Bo He
Alain TogbƩ
Volker Ziegler
+ Square-Free Integer 2010 Algebra Arithmetic
+ Diophantine triples with largest two elements in common 2020 Mihai Cipu
Andrej Dujella
Yasutsugu Fujita
+ PDF Chat A note on the Diophantine equation š‘„^{2š‘}-š·š‘¦Ā²=1 1989 Mao Hua Le
+ Generalized Diophantine š‘š-tuples 2021 Anup B. Dixit
Seoyoung C. Kim
M. Ram Murty
+ PDF Chat A polynomial variant of diophantine triples in linear recurrences 2022 Clemens Fuchs
Sebastian Heintze
+ Rational Diophantine Quadruples 2014 M. A. Gopalan
V. Geetha
+ Diophantine triples with three parameters 2024 Mihai Cipu
Yasutsugu Fujita
Maurice Mignotte
+ A polynomial variant of a problem of Diophantus and its consequences 2017 Alan Filipin
Ana Jurasić
+ A polynomial variant of a problem of Diophantus and its consequences 2017 Alan Filipin
Ana Jurasić
+ A diophantine problem in ā„¤[1 + \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\sqrt d\) \end{document})/2] 2009 Zrinka FranuÅ”ić
+ On simultaneous diophantine approximations to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>Ī¶</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi>Ī¶</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> 2014 Simon Dauguet
Wadim Zudilin
+ The extensibility of Diophantine pairs<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">{</mml:mo><mml:mi>k</mml:mi><mml:mo>āˆ’</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:math> 2007 Yasutsugu Fujita
+ On the system of Diophantine equations <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>āˆ’</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>r</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:ā€¦ 2015 Takafumi Miyazaki
Florian Luca