Diffeomorphism groups of critical regularity

Type: Article

Publication Date: 2020-03-14

Citations: 6

DOI: https://doi.org/10.1007/s00222-020-00953-y

Abstract

Abstract Let M be a circle or a compact interval, and let $$\alpha =k+\tau \ge 1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> be a real number such that $$k=\lfloor \alpha \rfloor $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mo>⌊</mml:mo> <mml:mi>α</mml:mi> <mml:mo>⌋</mml:mo> </mml:mrow> </mml:math> . We write $${{\,\mathrm{Diff}\,}}_+^{\alpha }(M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mspace/> <mml:mi>Diff</mml:mi> <mml:mspace/> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> for the group of orientation preserving $$C^k$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>C</mml:mi> <mml:mi>k</mml:mi> </mml:msup> </mml:math> diffeomorphisms of M whose k th derivatives are Hölder continuous with exponent $$\tau $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>τ</mml:mi> </mml:math> . We prove that there exists a continuum of isomorphism types of finitely generated subgroups $$G\le {{\,\mathrm{Diff}\,}}_+^\alpha (M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>≤</mml:mo> <mml:msubsup> <mml:mrow> <mml:mspace/> <mml:mi>Diff</mml:mi> <mml:mspace/> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> with the property that G admits no injective homomorphisms into $$\bigcup _{\beta &gt;\alpha }{{\,\mathrm{Diff}\,}}_+^\beta (M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mo>⋃</mml:mo> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:msubsup> <mml:mrow> <mml:mspace/> <mml:mi>Diff</mml:mi> <mml:mspace/> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . We also show the dual result: there exists a continuum of isomorphism types of finitely generated subgroups G of $$\bigcap _{\beta &lt;\alpha }{{\,\mathrm{Diff}\,}}_+^\beta (M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mo>⋂</mml:mo> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>&lt;</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:msubsup> <mml:mrow> <mml:mspace/> <mml:mi>Diff</mml:mi> <mml:mspace/> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> with the property that G admits no injective homomorphisms into $${{\,\mathrm{Diff}\,}}_+^\alpha (M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mspace/> <mml:mi>Diff</mml:mi> <mml:mspace/> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . The groups G are constructed so that their commutator groups are simple. We give some applications to smoothability of codimension one foliations and to homomorphisms between certain continuous groups of diffeomorphisms. For example, we show that if $$\alpha \ge 1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> is a real number not equal to 2, then there is no nontrivial homomorphism $${{\,\mathrm{Diff}\,}}_+^\alpha (S^1)\rightarrow \bigcup _{\beta &gt;\alpha }{{\,\mathrm{Diff}\,}}_+^{\beta }(S^1)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mspace/> <mml:mi>Diff</mml:mi> <mml:mspace/> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>→</mml:mo> <mml:msub> <mml:mo>⋃</mml:mo> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:msubsup> <mml:mrow> <mml:mspace/> <mml:mi>Diff</mml:mi> <mml:mspace/> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . Finally, we obtain an independent result that the class of finitely generated subgroups of $${{\,\mathrm{Diff}\,}}_+^1(M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mspace/> <mml:mi>Diff</mml:mi> <mml:mspace/> </mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is not closed under taking finite free products.

Locations

  • Inventiones mathematicae - View - PDF

Similar Works

Action Title Year Authors
+ Diffeomorphism groups of critical regularity 2017 Sang-Hyun Kim
Thomas Koberda
+ Algebraic Obstructions for General Regularities 2021 Sang-Hyun Kim
Thomas Koberda
+ PDF Chat Direct products, overlapping actions, and critical regularity 2021 Sang‐Hyun Kim
Thomas Koberda
Cristóbal Rivas
+ PDF Chat Concentrated cyclic actions of high periodicity 1991 Daniel Berend
Gabriel Katz
+ COMPLEXITY LEVELS OF CIRCLE HOMEOMORPHISMS 1996
+ PDF Chat Diffeomorphism groups of compact manifolds 2007 N. K. Smolentsev
+ On groups of Hölder diffeomorphisms and their regularity 2017 David Nicolas Nenning
Armin Rainer
+ Minimal 𝐶¹-diffeomorphisms of the circle which admit measurable fundamental domains 2013 Hiroki Kodama
Shigenori Matsumoto
+ PDF Chat Groups of Circle Diffeomorphisms 2011 Andrés Navas
+ One-parameter families of circle diffeomorphisms with strictly monotone rotation number 2013 Kiran Parkhe
+ Examples of diffeomorphism group cocycles with no periodic approximation 2018 Sebastián Hurtado
+ Hereditary circularity for energy minimal diffeomorphisms 2017 Ngin-Tee Koh
+ PDF Chat Diffeomorphisms of manifolds with finite fundamental group 1994 Georgia Triantafillou
+ On the regularity of the composition of diffeomorphisms 2011 Hasan İnci
Thomas Kappeler
Peter Topalov
+ On the regularity of the composition of diffeomorphisms 2011 Hasan İnci
Thomas Kappeler
Peter Topalov
+ PDF Chat Rigidity of smooth critical circle maps 2017 Pablo Guarino
Welington de Melo
+ PDF Chat Circle homeomorphisms with flat critical points 1991 Grzegorz Świątek
+ Groups of diffeomorphisms 1974 Hideki Omori
+ PDF Chat Smooth type 𝐼𝐼𝐼 diffeomorphisms of manifolds 1983 Jane Hawkins
+ Lie groups of real analytic diffeomorphisms are <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si16.svg" display="inline" id="d1e22"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-regular 2024 Helge Glöckner