Pointwise Convergence of the Schrödinger Flow

Type: Article

Publication Date: 2020-02-07

Citations: 12

DOI: https://doi.org/10.1093/imrn/rnaa036

Abstract

Abstract In this paper we address the question of the pointwise almost everywhere limit of nonlinear Schrödinger flows to the initial data, in both the continuous and the periodic settings. Then we show how, in some cases, certain smoothing effects for the non-homogeneous part of the solution can be used to upgrade to a uniform convergence to zero of this part, and we discuss the sharpness of the results obtained. We also use randomization techniques to prove that with much less regularity of the initial data, both in continuous and the periodic settings, almost surely one obtains uniform convergence of the nonlinear solution to the initial data, hence showing how more generic results can be obtained.

Locations

  • International Mathematics Research Notices - View
  • arXiv (Cornell University) - View - PDF
  • BIRD (Basque Center for Applied Mathematics) - View - PDF

Similar Works

Action Title Year Authors
+ Pointwise Convergence of the Schrödinger Flow 2019 E. Compaan
Renato Lucà
Gigliola Staffilani
+ PDF Chat Pointwise convergence of the Klein-Gordon flow 2024 Renato Lucà
Pablo Merino
+ Almost global existence for some nonlinear Schrödinger equations on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>𝕋</mml:mi> <mml:mi>d</mml:mi> </mml:msup></mml:math> in low regularity 2025 Joackim Bernier
Benoît Grébert
+ Schrodinger Equations: Pointwise Convergence to the Initial Data 1988 Luis Vega
+ Almost Sure Pointwise Convergence of the Cubic Nonlinear Schrödinger Equation on $$\mathbb {T}^2$$ 2022 Renato Lucà
+ Almost global existence for some nonlinear Schr{ö}dinger equations on $\mathbb{T}^d$ in low regularity 2022 Joackim Bernier
Benoît Grébert
+ Pointwise convergence of solutions to Schrödinger type equations 2014 Chunjie Zhang
+ PDF Chat On Decaying Properties of Nonlinear Schrödinger Equations 2024 Chenjie Fan
Gigliola Staffilani
Zehua Zhao
+ PDF Chat Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L2(T) 2012 J. Colliander
Tadahiro Oh
+ Pointwise convergence of solutions to Schrödinger equations 2007 Sanghyuk Lee
+ Probabilistic preservation of regularity for periodic nonlinear Schrödinger equations 2015 Andrea R. Nahmod
Gigliola Staffilani
+ PDF Chat Existence, Uniqueness and Asymptotic Dynamics of Nonlinear Schr\"odinger Equations With Quasi-Periodic Initial Data: I. The Standard NLS 2024 David Damanik
Yong Li
Fei Xu
+ PDF Chat On the wellposedness of periodic nonlinear Schrödinger equations with white noise dispersion 2023 Gavin Stewart
+ PDF Chat Nonlinear smoothing for the periodic generalized nonlinear Schrödinger equation 2022 Ryan McConnell
+ Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS 2014 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ PDF Chat Almost sure local well-posedness for the supercritical quintic NLS 2018 Justin T. Brereton
+ On nonlinear Schr\"odinger equations with almost periodic initial data 2014 Tadahiro Oh
+ On nonlinear Schrödinger equations with almost periodic initial data 2014 Tadahiro Oh
+ On pointwise convergence of Schrödinger means 2019 Evangelos Dimou
Andreas Seeger
+ On the probabilistic well-posedness of the nonlinear Schr\"{o}dinger equations with non-algebraic nonlinearities 2017 Tadahiro Oh
Mamoru Okamoto
Oana Pocovnicu

Works That Cite This (12)

Action Title Year Authors
+ PDF Chat Maximal estimates for Weyl sums on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">T</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math> 2022 Changxing Miao
Jiye Yuan
Tengfei Zhao
Alex Barron
+ PDF Chat Pointwise convergence over fractals for dispersive equations with homogeneous symbol 2022 Daniel Eceizabarrena
Felipe Ponce-Vanegas
+ PDF Chat Maximal estimates for the Schrödinger equation with orthonormal initial data 2020 Neal Bez
Sanghyuk Lee
Shohei Nakamura
+ The Cauchy problem for the generalized KdV equation with rough data and random data 2020 Wei Yan
Xiangqian Yan
Jinqiao Duan
Jianhua Huang
+ The Wave Maps Equation and Brownian Paths 2024 Bjoern Bringmann
Jonas Lührmann
Gigliola Staffilani
+ PDF Chat Convergence over fractals for the periodic Schrödinger equation 2022 Daniel Eceizabarrena
Renato Lucà
+ Pointwise convergence and nonlinear smoothing of the generalized Zakharov–Kuznetsov equation 2024 Wei Yan
Weimin Wang
Xiangqian Yan
+ Convergence problem of Schrödinger equation in Fourier-Lebesgue spaces with rough data and random data 2021 Xiangqian Yan
Yajuan Zhao
Wei Yan
+ Probabilistic pointwise convergence problem of Schrödinger equations on manifolds 2021 Junfang Wang
Wei Yan
Xiangqian Yan
+ PDF Chat Counterexamples for the fractal Schrödinger convergence problem with an Intermediate Space Trick 2022 Daniel Eceizabarrena
Felipe Ponce-Vanegas