Uniformly valid confidence intervals post-model-selection

Type: Article

Publication Date: 2020-02-01

Citations: 35

DOI: https://doi.org/10.1214/19-aos1815

Abstract

We suggest general methods to construct asymptotically uniformly valid confidence intervals post-model-selection. The constructions are based on principles recently proposed by Berk et al. (Ann. Statist. 41 (2013) 802–837). In particular, the candidate models used can be misspecified, the target of inference is model-specific, and coverage is guaranteed for any data-driven model selection procedure. After developing a general theory, we apply our methods to practically important situations where the candidate set of models, from which a working model is selected, consists of fixed design homoskedastic or heteroskedastic linear models, or of binary regression models with general link functions. In an extensive simulation study, we find that the proposed confidence intervals perform remarkably well, even when compared to existing methods that are tailored only for specific model selection procedures.

Locations

  • The Annals of Statistics - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Uniformly valid confidence intervals post-model-selection 2016 François Bachoc
David Preinerstorfer
Lukas Steinberger
+ Uniformly valid confidence intervals post-model-selection 2016 François Bachoc
David Preinerstorfer
Lukas Steinberger
+ On Various Confidence Intervals Post-Model-Selection 2015 Hannes Leeb
Benedikt M. Pötscher
Karl Ewald
+ On various confidence intervals post-model-selection 2014 Hannes Leeb
Benedikt M. Pötscher
Karl Ewald
+ On various confidence intervals post-model-selection 2014 Hannes Leeb
Benedikt M. Pötscher
Karl Ewald
+ PDF Chat Valid confidence intervals for post-model-selection predictors 2019 François Bachoc
Hannes Leeb
Benedikt M. Pötscher
+ Valid confidence intervals for post-model-selection predictors 2014 François Bachoc
Hannes Leeb
Benedikt M. Pötscher
+ Valid confidence intervals for post-model-selection predictors 2014 François Bachoc
Hannes Leeb
Benedikt M. Pötscher
+ Valid confidence intervals for post-model-selection predictors 2014 François Bachoc
Hannes Leeb
Benedikt M. Pötscher
+ Valid confidence intervals for post-model-selection predictors 2014 François Bachoc
Hannes Leeb
Benedikt M. Pötscher
+ PDF Chat Uniform asymptotic inference and the bootstrap after model selection 2018 Ryan J. Tibshirani
Alessandro Rinaldo
Rob Tibshirani
Larry Wasserman
+ Uniform Asymptotic Inference and the Bootstrap After Model Selection 2015 Ryan J. Tibshirani
Alessandro Rinaldo
Robert Tibshirani
Larry Wasserman
+ Uniform Asymptotic Inference and the Bootstrap After Model Selection 2015 Ryan J. Tibshirani
Alessandro Rinaldo
Robert Tibshirani
Larry Wasserman
+ Hybrid Confidence Intervals for Informative Uniform Asymptotic Inference After Model Selection 2020 Adam McCloskey
+ PDF Chat Asymptotically Uniform Tests After Consistent Model Selection in the Linear Regression Model 2019 Adam McCloskey
+ Valid Post-selection Inference in Assumption-lean Linear Regression 2018 Arun Kumar Kuchibhotla
Lawrence D. Brown
Andreas Buja
Edward I. George
Linda Zhao
+ PDF Chat Hybrid confidence intervals for informative uniform asymptotic inference after model selection 2023 Adam McCloskey
+ A Simple, Short, but Never-Empty Confidence Interval for Partially Identified Parameters 2020 Jörg Stoye
+ A simple, short, but never-empty confidence interval for partially identified parameters 2021
+ A Simple, Short, but Never-Empty Confidence Interval for Partially Identified Parameters 2020 Jörg Stoye

Works That Cite This (28)

Action Title Year Authors
+ Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation 2024 Xinkai Zhou
Qiang Heng
C. Eric
Hua Zhou
+ PDF Chat Post-selection inference via algorithmic stability 2023 Tijana Zrnic
Michael I. Jordan
+ PDF Chat Valid post-selection inference in model-free linear regression 2020 Arun Kumar Kuchibhotla
Lawrence D. Brown
Andreas Buja
Junhui Cai
Edward I. George
Linda Zhao
+ Bootstrapping and sample splitting for high-dimensional, assumption-lean inference 2019 Alessandro Rinaldo
Larry Wasserman
Max G’Sell
+ PDF Chat Post hoc confidence bounds on false positives using reference families 2020 Gilles Blanchard
Pierre Neuvial
Étienne Roquain
+ PDF Chat UNIFORM-IN-SUBMODEL BOUNDS FOR LINEAR REGRESSION IN A MODEL-FREE FRAMEWORK 2021 Arun Kumar Kuchibhotla
Lawrence D. Brown
Andreas Buja
Edward I. George
Linda Zhao
+ PDF Chat Exact selective inference with randomization 2024 Snigdha Panigrahi
Kevin Fry
Jonathan Taylor
+ Post-Model-Selection Statistical Inference with Interrupted Time Series Designs: An Evaluation of an Assault Weapons Ban in California 2021 Richard A. Berk
+ PDF Chat Optimal finite sample post-selection confidence distributions in generalized linear models 2022 Andrea C. Garcia‐Angulo
Gerda Claeskens
+ PDF Chat Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes 2020 François Bachoc
José Betancourt
Reinhard Furrer
Thierry Klein