Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning

Type: Preprint

Publication Date: 2020-01-01

Citations: 145

DOI: https://doi.org/10.14722/ndss.2020.23005

Locations

  • Scopus (Elsevier) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • ePrints@IISc (Indian Institute of Science) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ BLAZE: Blazing Fast Privacy-Preserving Machine Learning 2020 Arpita Patra
Ajith Suresh
+ MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning 2021 Ajith Suresh
+ PDF Chat The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries 2024 Tianpei Lu
Bingsheng Zhang
Lichun Li
Kui Ren
+ PDF Chat Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training 2024 Tanveer A. Khan
Mindaugas Budzys
Khoa Nguyen
Antonis Michalas
+ PDF Chat Hawk: Accurate and Fast Privacy-Preserving Machine Learning Using Secure Lookup Table Computation 2024 Hamza Saleem
Amir Ziashahabi
Muhammad Naveed
Salman Avestimehr
+ PDF Chat Hawk: Accurate and Fast Privacy-Preserving Machine Learning Using Secure Lookup Table Computation 2024 Hamza Saleem
Amir Ziashahabi
Muhammad Naveed
Salman Avestimehr
+ MORSE-STF: A Privacy Preserving Computation System. 2021 Qizhi Zhang
Yuan Zhao
Lichun Li
JiaoFu Zhang
Qichao Zhang
Yashun Zhou
Dong Yin
Sijun Tan
Shan Yin
+ Morse-STF: Improved Protocols for Privacy-Preserving Machine Learning 2021 Qizhi Zhang
Sijun Tan
Lichun Li
Yun Zhao
Dong Yin
Shan Yin
+ PrivPy: Enabling Scalable and General Privacy-Preserving Machine Learning 2018 Yi Li
Yitao Duan
Yu Yu
Shuoyao Zhao
Wei Xu
+ CodedPrivateML: A Fast and Privacy-Preserving Framework for Distributed Machine Learning 2019 Jinhyun So
Ba艧ak G眉ler
A. Salman Avestimehr
+ CodedPrivateML: A Fast and Privacy-Preserving Framework for Distributed Machine Learning 2019 Jinhyun So
Ba艧ak G眉ler
Amir Salman Avestimehr
Payman Mohassel
+ CodedPrivateML: A Fast and Privacy-Preserving Framework for Distributed Machine Learning 2021 Jinhyun So
Ba艧ak G眉ler
A. Salman Avestimehr
+ POSEIDON: Privacy-Preserving Federated Neural Network Learning 2020 Sinem Sav
Apostolos Pyrgelis
Juan Ram贸n Troncoso-Pastoriza
David Froelicher
Jean-Philippe Bossuat
Jo茫o M. C. Sousa
Jean鈥怭ierre Hubaux
+ POSEIDON: Privacy-Preserving Federated Neural Network Learning 2020 Sinem Sav
Apostolos Pyrgelis
Juan Ram贸n Troncoso-Pastoriza
David Froelicher
Jean-Philippe Bossuat
Jo茫o S谩 Sousa
Jean鈥怭ierre Hubaux
+ Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 2021 Nuttapong Attrapadung
Koki Hamada
Dai Ikarashi
Ryo Kikuchi
Takahiro Matsuda
Ibuki Mishina
Hiraku Morita
Jacob C. N. Schuldt
+ PINFER: Privacy-Preserving Inference for Machine Learning 2019 Marc J贸ye
Fabien A. P. Petitcolas
+ FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning 2020 Sameer Wagh
Shruti Tople
Fabrice Benhamouda
Eyal Kushilevitz
Prateek Mittal
Tal Rabin
+ PDF Chat SSNet: A Lightweight Multi-Party Computation Scheme for Practical Privacy-Preserving Machine Learning Service in the Cloud 2024 Shijin Duan
Chenghong Wang
Hongwu Peng
Yukui Luo
Wujie Wen
Caiwen Ding
Xiaolin Xu
+ CryptoNAS: Private Inference on a ReLU Budget 2020 Zahra Ghodsi
Akshaj Kumar Veldanda
Brandon Reagen
Siddharth Garg
+ slytHErin: An Agile Framework for Encrypted Deep Neural Network Inference 2023 Francesco Intoci
Sinem Sav
Apostolos Pyrgelis
Jean-Philippe Bossuat
Juan Ram贸n Troncoso-Pastoriza
Jean鈥怭ierre Hubaux

Works That Cite This (40)

Action Title Year Authors
+ Fusion: Efficient and Secure Inference Resilient to Malicious Servers 2023 Caiqin Dong
Jian Weng
Jia-Nan Liu
Yue Zhang
Yao T
Anjia Yang
Yudan Cheng
Shun Hu
+ PDF Chat Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 2022 Nuttapong Attrapadung
Koki Hamada
Dai Ikarashi
Ryo Kikuchi
Takahiro Matsuda
Ibuki Mishina
Hiraku Morita
Jacob C. N. Schuldt
+ PDF Chat Towards secure and practical machine learning via secret sharing and random permutation 2022 Fei Zheng
Chaochao Chen
Xiaolin Zheng
Mingjie Zhu
+ PDF Chat Towards privacy-preserving and verifiable federated matrix factorization 2022 Xicheng Wan
Yifeng Zheng
Qun Li
Anmin Fu
Mang Su
Yansong Gao
+ PDF Chat SafeNet: The Unreasonable Effectiveness of Ensembles in Private Collaborative Learning 2023 Harsh Chaudhari
Matthew Jagielski
Alina Oprea
+ PDF Chat CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU 2021 Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
+ CrypTen: Secure Multi-Party Computation Meets Machine Learning 2021 Brian Knott
Shobha Venkataraman
Awni Hannun
Shubho Sengupta
Mark Ibrahim
Laurens van der Maaten
+ PDF Chat pMPL: A Robust Multi-Party Learning Framework with a Privileged Party 2022 Lushan Song
Jiaxuan Wang
Zhexuan Wang
Xinyu Tu
G. Lin
Wenqiang Ruan
Haoqi Wu
Weili Han
+ Hercules: Boosting the Performance of Privacy-Preserving Federated Learning 2022 Guowen Xu
Xingshuo Han
Shengmin Xu
Tianwei Zhang
Hongwei Li
Xinyi Huang
Robert H. Deng
+ Pencil: Private and Extensible Collaborative Learning without the Non-Colluding Assumption 2024 Xuanqi Liu
Zhuotao Liu
Qi Li
Ke Xu
Mingwei Xu