Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Learning Halfspaces with Massart Noise Under Structured Distributions
Ilias Diakonikolas
,
Vasilis Kontonis
,
Christos Tzamos
,
Nikos Zarifis
Type:
Preprint
Publication Date:
2020-02-13
Citations:
7
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Learning Halfspaces with Massart Noise Under Structured Distributions
2020
Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+
Non-Convex SGD Learns Halfspaces with Adversarial Label Noise
2020
Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+
PDF
Chat
A Near-optimal Algorithm for Learning Margin Halfspaces with Massart Noise
2025
Ilias Diakonikolas
Nikos Zarifis
+
Learning Halfspaces with Tsybakov Noise
2020
Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+
Distribution-Independent PAC Learning of Halfspaces with Massart Noise
2019
Ilias Diakonikolas
Themis Gouleakis
Christos Tzamos
+
Distribution-Independent PAC Learning of Halfspaces with Massart Noise
2019
Ilias Diakonikolas
Themis Gouleakis
Christos Tzamos
+
Learning Halfspaces with Tsybakov Noise.
2020
Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+
S-Concave Distributions: Towards Broader Distributions for Noise-Tolerant and Sample-Efficient Learning Algorithms.
2017
Maria-Florina Balcan
Hongyang Zhang
+
Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions
2017
Maria-Florina Balcan
Hongyang Zhang
+
PDF
Chat
Learning Noisy Halfspaces with a Margin: Massart is No Harder than Random
2025
Gautam Chandrasekaran
Vasilis Kontonis
Konstantinos Stavropoulos
Kevin Tian
+
Forster Decomposition and Learning Halfspaces with Noise
2021
Ilias Diakonikolas
Daniel M. Kane
Christos Tzamos
+
Forster Decomposition and Learning Halfspaces with Noise
2021
Ilias Diakonikolas
Daniel M. Kane
Christos Tzamos
+
An Efficient Tester-Learner for Halfspaces
2023
Aravind Gollakota
Adam R. Klivans
Konstantinos Stavropoulos
Arsen Vasilyan
+
Improved Algorithms for Efficient Active Learning Halfspaces with Massart and Tsybakov noise
2021
Chicheng Zhang
Yinan Li
+
Improved Algorithms for Efficient Active Learning Halfspaces with Massart and Tsybakov noise
2021
Chicheng Zhang
Yinan Li
+
Efficient Active Learning Halfspaces with Tsybakov Noise: A Non-convex Optimization Approach
2023
Yinan Li
Chicheng Zhang
+
Sample-Optimal PAC Learning of Halfspaces with Malicious Noise
2021
Jie Shen
+
Efficient Robust Proper Learning of Log-concave Distributions
2016
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+
PDF
Chat
Efficient PAC Learning of Halfspaces with Constant Malicious Noise Rate
2024
Jie Shen
Xiaoyu Li
+
Learning discrete distributions with infinite support
2020
Doron Cohen
Aryeh Kontorovich
Geoffrey Wolfer
Works That Cite This (7)
Action
Title
Year
Authors
+
A Study of Neural Training with Non-Gradient and Noise Assisted Gradient Methods.
2020
Anirbit Mukherjee
Ramchandran Muthukumar
+
On the Power of Localized Perceptron for Label-Optimal Learning of Halfspaces with Adversarial Noise
2020
Jie Shen
+
Threshold Phenomena in Learning Halfspaces with Massart Noise
2021
Ilias Diakonikolas
Daniel M. Kane
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+
Hardness of Learning Halfspaces with Massart Noise.
2020
Ilias Diakonikolas
Daniel M. Kane
+
Classification Under Misspecification: Halfspaces, Generalized Linear Models, and Connections to Evolvability
2020
Sitan Chen
Frederic Koehler
Ankur Moitra
Morris Yau
+
Improved Algorithms for Efficient Active Learning Halfspaces with Massart and Tsybakov noise
2021
Chicheng Zhang
Yinan Li
+
PDF
Chat
Online and Distribution-Free Robustness: Regression and Contextual Bandits with Huber Contamination
2022
Sitan Chen
Frederic Koehler
Ankur Moitra
Morris Yau
Works Cited by This (13)
Action
Title
Year
Authors
+
PDF
Chat
Risk bounds for statistical learning
2006
Pascal Massart
Élodie Nédélec
+
PDF
Chat
Concentration of mass on convex bodies
2006
Grigoris Paouris
+
None
2007
Remco van der Hofstad
Gerard Hooghiemstra
Piet Van Mieghem
+
Nonconvex sampling with the Metropolis-adjusted Langevin algorithm
2019
Oren Mangoubi
Nisheeth K. Vishnoi
+
PDF
Chat
Lower bounds for non-convex stochastic optimization
2022
Yossi Arjevani
Yair Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake Woodworth
+
Analysis of Boolean Functions
2014
Ryan O’Donnell
+
PDF
Chat
Complexity theoretic limitations on learning halfspaces
2016
Amit Daniely
+
PDF
Chat
The Power of Localization for Efficiently Learning Linear Separators with Noise
2017
Pranjal Awasthi
Maria Florina Balcan
Philip M. Long
+
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
2017
Yuchen Zhang
Percy Liang
Moses Charikar
+
Learning geometric concepts with nasty noise
2018
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart