Neural MMO v1.3: A Massively Multiagent Game Environment for Training and Evaluating Neural Networks

Type: Preprint

Publication Date: 2020-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.2001.12004

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Neural MMO: A Massively Multiagent Game Environment for Training and Evaluating Intelligent Agents 2019 Joseph Suárez
Yilun Du
Phillip Isola
Igor Mordatch
+ PDF Chat Massively Multiagent Minigames for Training Generalist Agents 2024 Kyoung Whan Choe
Ryan J. Sullivan
Joseph Suárez
+ The Neural MMO Platform for Massively Multiagent Research 2021 Joseph Suárez
Yilun Du
Clare Zhu
Igor Mordatch
Phillip Isola
+ Developing, Evaluating and Scaling Learning Agents in Multi-Agent Environments 2022 Ian Gemp
T Anthony
Yoram Bachrach
Avishkar Bhoopchand
Kalesha Bullard
Jerome J. Connor
Vibhavari Dasagi
Bart De Vylder
Edgar A. Duéñez‐Guzmán
Romuald Élie
+ PDF Chat Developing, evaluating and scaling learning agents in multi-agent environments 2022 Ian Gemp
Thomas Anthony
Yoram Bachrach
Avishkar Bhoopchand
Kalesha Bullard
Jerome T. Connor
Vibhavari Dasagi
Bart De Vylder
Edgar A. Duéñez‐Guzmán
Romuald Élie
+ PDF Chat FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning 2024 Wenzhe Li
Zihan Ding
Seth Karten
Chi Jin
+ The StarCraft Multi-Agent Challenge 2019 Mikayel Samvelyan
Tabish Rashid
Christian Schroeder de Witt
Gregory Farquhar
Nantas Nardelli
Tim G. J. Rudner
Chia-Man Hung
Philip H. S. Torr
Jakob Foerster
Shimon Whiteson
+ AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning 2023 Michaël Mathieu
Sherjil Ozair
Srivatsan Srinivasan
Çaǧlar Gülçehre
Shangtong Zhang
Ray Jiang
Tom Le Paine
Richard J. Powell
Konrad Żołna
Julian Schrittwieser
+ JaxMARL: Multi-Agent RL Environments in JAX 2023 Alexander R. Rutherford
Benjamin J. Ellis
Matteo Gallici
Jonathan E. Cook
Andrei N. Lupu
Garðar Ingvarsson
Timon Willi
Akbir Khan
Christian Schroeder de Witt
Alexandra Souly
+ The StarCraft Multi-Agent Challenge 2019 Mikayel Samvelyan
Tabish Rashid
Christian Schroeder de Witt
Gregory Farquhar
Nantas Nardelli
Tim G. J. Rudner
Chia-Man Hung
Philip H. S. Torr
Jakob Foerster
Shimon Whiteson
+ The Surprising Effectiveness of MAPPO in Cooperative, Multi-Agent Games 2021 Chao Yu
Akash Velu
Eugene Vinitsky
Yu Wang
Alexandre M. Bayen
Yi Wu
+ Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play 2023 Daniel Bairamian
Philippe Marcotte
Joshua Romoff
R. Gábriel
Derek Nowrouzezahrai
+ SMAClite: A Lightweight Environment for Multi-Agent Reinforcement Learning 2023 Adam Michalski
Filippos Christianos
Stefano V. Albrecht
+ Battlesnake Challenge: A Multi-agent Reinforcement Learning Playground with Human-in-the-loop 2020 C.Y. Chung
Anna Luo
Scott Perry
Xavier Raffin
+ Mimicking To Dominate: Imitation Learning Strategies for Success in Multiagent Competitive Games 2023 The Viet Bui
Tien Mai
Thanh H. Nguyen
+ PDF Chat A Competition Winning Deep Reinforcement Learning Agent in microRTS 2024 Scott Goodfriend
+ Deep Multiagent Reinforcement Learning: Challenges and Directions 2021 Annie Wong
Thomas Bäck
Anna V. Kononova
Aske Plaat
+ The NeurIPS 2022 Neural MMO Challenge: A Massively Multiagent Competition with Specialization and Trade 2023 Enhong Liu
Joseph Suárez
Chenhui You
Bo Wu
Bingcheng Chen
Jun Hu
Jiaxin Chen
Xiaolong Zhu
Clare Zhu
Julian Togelius
+ PDF Chat Arena: A General Evaluation Platform and Building Toolkit for Multi-Agent Intelligence 2020 Yuhang Song
Andrzej Wojcicki
Thomas Lukasiewicz
Jianyi Wang
Abi Aryan
Zhenghua Xu
Mai Xu
Zihan Ding
Lianlong Wu
+ Arena: A General Evaluation Platform and Building Toolkit for Multi-Agent Intelligence 2019 Yuhang Song
Andrzej Wojcicki
Thomas Lukasiewicz
Jianyi Wang
Abi Aryan
Zhenghua Xu
Mai Xu
Zihan Ding
Lianlong Wu

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (11)

Action Title Year Authors
+ PDF Chat Emergence of Grounded Compositional Language in Multi-Agent Populations 2018 Igor Mordatch
Pieter Abbeel
+ Emergent Complexity via Multi-Agent Competition. 2017 Trapit Bansal
Jakub Pachocki
Szymon Sidor
Ilya Sutskever
Igor Mordatch
+ MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence 2017 Lianmin Zheng
Jiacheng Yang
Han Cai
Weinan Zhang
Jun Wang
Yong Yu
+ Ray: A Distributed Framework for Emerging AI Applications 2017 Philipp Moritz
Robert Nishihara
Stephanie Wang
Alexey Tumanov
Richard Liaw
Eric Liang
Melih Elibol
Zongheng Yang
William Paul
Michael I. Jordan
+ Mean Field Multi-Agent Reinforcement Learning 2018 Yaodong Yang
Rui Luo
Minne Li
Ming Zhou
Weinan Zhang
Jun Wang
+ Gotta Learn Fast: A New Benchmark for Generalization in RL 2018 Alex Nichol
Vicki Pfau
Christopher Hesse
Oleg Klimov
John Schulman
+ A Study of AI Population Dynamics with Million-agent Reinforcement Learning 2017 Yaodong Yang
Lantao Yu
Yiwei Bai
Jun Wang
Weinan Zhang
Ying Wen
Yong Yu
+ Human-level performance in 3D multiplayer games with population-based reinforcement learning 2019 Max Jaderberg
Wojciech Marian Czarnecki
Iain Dunning
Luke Marris
Guy Lever
Antonio García Castañeda
Charles Beattie
Neil C. Rabinowitz
Ari S. Morcos
Avraham Ruderman
+ Neural MMO: A Massively Multiagent Game Environment for Training and Evaluating Intelligent Agents 2019 Joseph Suárez
Yilun Du
Phillip Isola
Igor Mordatch
+ Emergent Tool Use From Multi-Agent Autocurricula 2019 Bowen Baker
Ingmar Kanitscheider
Todor Markov
Yi Wu
Glenn Powell
Bob McGrew
Igor Mordatch