Applications of analytic newvectors for $$\mathrm {GL}(n)$$

Type: Article

Publication Date: 2021-06-25

Citations: 12

DOI: https://doi.org/10.1007/s00208-021-02207-5

Abstract

Abstract We provide a few natural applications of the analytic newvectors, initiated in Jana and Nelson (Analytic newvectors for $$\text {GL}_n(\mathbb {R})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mtext>GL</mml:mtext> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , arXiv:1911.01880 [math.NT], 2019), to some analytic questions in automorphic forms for $$\mathrm {PGL}_n(\mathbb {Z})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>PGL</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> with $$n\ge 2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , in the archimedean analytic conductor aspect. We prove an orthogonality result of the Fourier coefficients, a density estimate of the non-tempered forms, an equidistribution result of the Satake parameters with respect to the Sato–Tate measure, and a second moment estimate of the central L -values as strong as Lindelöf on average. We also prove the random matrix prediction about the distribution of the low-lying zeros of automorphic L -function in the analytic conductor aspect. The new ideas of the proofs include the use of analytic newvectors to construct an approximate projector on the automorphic spectrum with bounded conductors and a soft local (both at finite and infinite places) analysis of the geometric side of the Kuznetsov trace formula.

Locations

  • Mathematische Annalen - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Applications of analytic newvectors for $\mathrm{GL}(r)$ 2020 Subhajit Jana
+ On large families of automorphic L-functions on GL2 2010 Goran Djanković
+ On automorphic analogues of the Möbius randomness principle 2018 Yujiao Jiang
Guangshi Lü
+ PDF Chat On the Density of Low Lying Zeros of a Large Family of Automorphic $L$-functions 2024 Timothy Cheek
Pico Gilman
Kareem Jaber
Steven J. Miller
Marie-Hélène Tomé
+ PDF Chat New Zero-Density Results for Automorphic L-Functions of GL(n) 2021 Wenjiang Ding
Huafeng Liu
Deyu Zhang
+ Spectral Analysis of the Zeta and L-Functions 2012 Yoichi Motohashi
+ PDF Chat Exceptional zeros of Rankin-Selberg $L$-functions and joint Sato-Tate distributions 2024 Jesse Thorner
+ Low-lying zeros of symmetric power $L$-functions weighted by symmetric square $L$-values 2021 Shingo Sugiyama
+ PDF Chat Low-lying zeros of symmetric power $L$-functions weighted by symmetric square $L$-values 2021 Shingo Sugiyama
+ Spectral reciprocity for $\mathrm{GL}(n)$ and simultaneous non-vanishing of central $L$-values 2021 Subhajit Jana
Ramon M. Nunes
+ Spectral reciprocity for $\mathrm{GL}(n)$ and simultaneous non-vanishing of central $L$-values 2021 Subhajit Jana
Ramon M. Nunes
+ Second moment of $\mathrm{GL}(n)\times\mathrm{GL}(n)$ Rankin--Selberg $L$-functions 2020 Subhajit Jana
+ PDF Chat A Note on Spectral Analysis for ${\rm GL}_2$: I 2016 Han Wu
+ Analytic newvectors for $\mathrm{GL}_n(\mathbb{R})$ 2019 Subhajit Jana
Paul D. Nelson
+ Analytic newvectors for $\mathrm{GL}_n(\mathbb{R})$ 2019 Subhajit Jana
Paul D. Nelson
+ Zeros of Rankin-Selberg $L$-functions in families 2021 Peter Humphries
Jesse Thorner
+ Zero density of L-functions related to Maass forms 2013 Hengcai Tang
+ Fourier coefficients of automorphic forms and arthur classification 2013 Baiying Liu
+ Automorphic Forms and Arithmetic 2021 Valentin Blomer
Emmanuel Kowalski
Philippe Michel
Maryna Viazovska
+ PDF Chat Cancellation in sums over special sequences on $\mathbf{{\rm{GL}}_{m}}$ and their applications 2024 Qiang Ma
Rui Zhang