Compressive MRI quantification using convex spatiotemporal priors and deep auto-encoders

Type: Preprint

Publication Date: 2020-01-23

Citations: 3

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Compressive MRI quantification using convex spatiotemporal priors and deep auto-encoders 2020 Mohammad Golbabaee
Guido Buonincontri
Carolin M. Pirkl
Marion I. Menzel
Bjoern Menze
Mike Davies
Pedro Gómez
+ PDF Chat Training Physics-Driven Deep Learning Reconstruction without Raw Data Access for Equitable Fast MRI 2024 Yaşar Utku Alçalar
Merve Gülle
Mehmet Akçakaya
+ Nonlinear Equivariant Imaging: Learning Multi-Parametric Tissue Mapping without Ground Truth for Compressive Quantitative MRI 2022 Ketan Fatania
Kwai Y. Chau
Carolin M. Pirkl
Marion I. Menzel
Peter Hall
Mohammad Golbabaee
+ PDF Chat Fast MRI Reconstruction Using Deep Learning-based Compressed Sensing: A Systematic Review. 2024 Mojtaba Safari
Zach Eidex
Chih‐Wei Chang
Richard L. J. Qiu
Xiaofeng Yang
+ PDF Chat Nonlinear Equivariant Imaging: Learning Multi-Parametric Tissue Mapping without Ground Truth for Compressive Quantitative MRI 2023 Ketan Fatania
Kwai Y. Chau
Carolin M. Pirkl
Marion I. Menzel
Mohammad Golbabaee
+ PDF Chat Advancing MRI Reconstruction: A Systematic Review of Deep Learning and Compressed Sensing Integration 2025 Mojtaba Safari
Zach Eidex
Chih‐Wei Chang
Richard L. J. Qiu
Xiaofeng Yang
+ Single Image Compressed Sensing MRI via a Self-Supervised Deep Denoising Approach 2023 Marlon Bran Lorenzana
Feng Liu
Shekhar S. Chandra
+ AI-based Reconstruction for Fast MRI -- A Systematic Review and Meta-analysis 2021 Yutong Chen
Carola‐Bibiane Schönlieb
Píetro Lió
Tim Leiner
Pier Luigi Dragotti
Ge Wang
Daniel Rueckert
David Firmin
Guang Yang
+ PDF Chat AI-Based Reconstruction for Fast MRI—A Systematic Review and Meta-Analysis 2022 Yutong Chen
Carola‐Bibiane Schönlieb
Píetro Lió
Tim Leiner
Pier Luigi Dragotti
Ge Wang
Daniel Rueckert
David Firmin
Guang Yang
+ Compressed Sensing MRI Reconstruction with Cyclic Loss in Generative Adversarial Networks. 2017 Tran Minh Quan
Thanh Nguyen-Duc
Won-Ki Jeong
+ Deep, Deep Learning with BART 2022 Moritz Blumenthal
Guanxiong Luo
Martin Schilling
H. Christian M. Holme
Martin Uecker
+ PDF Chat Deep, deep learning with BART 2022 Moritz Blumenthal
Guanxiong Luo
Martin Schilling
H. Christian M. Holme
Martin Uecker
+ PDF Chat Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss 2018 Tran Minh Quan
Thanh Nguyen-Duc
Won-Ki Jeong
+ PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction 2023 Felix Zimmermann
Christoph Kolbitsch
Patrick Schuenke
Andreas Kofler
+ Compressed Sensing: From Research to Clinical Practice with Data-Driven Learning 2019 Joseph Y. Cheng
Feiyu Chen
Christopher M. Sandino
Morteza Mardani
John M. Pauly
Shreyas Vasanawala
+ Generative Image Priors for MRI Reconstruction Trained from Magnitude-Only Images 2023 Guanxiong Luo
Xiaoqing Wang
Mortiz Blumenthal
Martin Schilling
Erik Hans Ulrich Rauf
Raviteja Kotikalapudi
Niels K. Focke
Martin Uecker
+ PDF Chat Score-based diffusion models for accelerated MRI 2022 Hyungjin Chung
Jong Chul Ye
+ Stable Deep MRI Reconstruction using Generative Priors 2022 Martin Zach
Florian Knöll
Thomas Pock
+ PDF Chat Robust plug-and-play methods for highly accelerated non-Cartesian MRI reconstruction 2024 Pierre-Antoine Comby
Benjamin Lapostolle
Matthieu Terris
Philippe Ciuciu
+ $Σ$-net: Systematic Evaluation of Iterative Deep Neural Networks for Fast Parallel MR Image Reconstruction 2019 Kerstin Hammernik
Jo Schlemper
Chen Qin
Jinming Duan
Ronald M. Summers
Daniel Rueckert