Type: Preprint
Publication Date: 2021-06-09
Citations: 0
We study the inequities in the distribution of Frobenius elements in Galois extensions of the rational numbers with Galois groups that are either dihedral $D_{2n}$ or (generalized) quaternion $\mathbb H_{2n}$ of two-power order. In the spirit of recent work of Fiorilli and Jouve arXiv:2001.05428, we study, under natural hypotheses, some families of such extensions, in a horizontal aspect, where the degree is fixed, and in a vertical aspect, where the degree goes to infinity. Our main contribution uncovers in families of extensions a phenomenon, for which Ng gave numerical evidence : real zeros of Artin L-functions sometimes have a radical influence on the distribution of Frobenius elements.
Action | Title | Year | Authors |
---|