A classification of isogeny-torsion graphs of elliptic curves over $\mathbb{Q}$

Type: Preprint

Publication Date: 2020-01-16

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ PDF Chat A classification of isogeny‐torsion graphs of Q‐isogeny classes of elliptic curves 2021 Garen Chiloyan
Álvaro Lozano‐Robledo
+ Infinite Families Of Isogeny-Torsion Graphs 2021 Garen Chiloyan
+ 2-adic images of CM isogeny-torsion graphs 2022 Garen Chiloyan
+ 2-adic Galois images of non-CM isogeny-torsion graphs 2023 Garen Chiloyan
+ On a Classification of 3 adic Galois images associated to isogeny torsion graphs 2023 Rakvi
+ PDF Chat Infinite families of isogeny-torsion graphs 2022 Garen Chiloyan
+ PDF Chat Explicit classification of isogeny graphs of rational elliptic curves 2022 Alexander J. Barrios
+ Explicit classification of isogeny graphs of rational elliptic curves 2022 Alexander J. Barrios
+ Torsion groups of elliptic curves over the $\mathbb Z_p$-extensions of $\mathbb Q$ 2018 Michael Chou
Harris B. Daniels
Ivan Krijan
Filip Najman
+ 2-Adic Galois images of isogeny-torsion graphs over ℚ with CM 2023 Garen Chiloyan
+ PDF Chat On the torsion of rational elliptic curves over quartic fields 2016 Enrique GonzĂĄlez–JimĂ©nez
Álvaro Lozano‐Robledo
+ Torsion groups of elliptic curves over some infinite abelian extensions of $\mathbb{Q}$ 2020 Tomislav GuĆŸvić
Ivan Krijan
+ PDF Chat Torsion of elliptic curves with rational $j$-invariant over the maximal elementary abelian 2-extension of $\mathbb{Q}$ 2024 Lucas Hamada
+ PDF Chat Torsion subgroups of rational elliptic curves over the compositum of all cubic fields 2016 Harris B. Daniels
Álvaro Lozano‐Robledo
Filip Najman
Andrew V. Sutherland
+ Torsion groups of elliptic curves over $\mathbb{Q}(ÎŒ_{p^{\infty}})$ 2022 Tomislav GuĆŸvić
Borna Vukorepa
+ PDF Chat Torsion of Rational Elliptic Curves over the Cyclotomic Extensions of $\mathbb{Q}$ 2024 Ömer Avcı
+ PDF Chat Torsion of rational elliptic curves over cubic fields 2016 Enrique GonzĂĄlez–JimĂ©nez
Filip Najman
José M. Tornero
+ The torsion subgroup of the elliptic curve $Y^2 = X^3 + AX$ over the maximal abelian extension of $\mathbb{Q}$ 2020 Jerome T. Dimabayao
+ On the number of Q-isomorphism classes of elliptic curves in each Q-isogeny class 1982 M. A. Kenku
+ PDF Chat Torsion of elliptic curves with rational $j$-invariant over quartic number fields 2024 Lucas Hamada

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors