Type: Article
Publication Date: 2019-11-22
Citations: 8
DOI: https://doi.org/10.37236/8787
We prove that $\min\{\chi(G), \chi(H)\} - \chi(G\times H)$ can be arbitrarily large, and that if Stahl's conjecture on the multichromatic number of Kneser graphs holds, then $\min\{\chi(G), \chi(H)\}/\chi(G\times H) \leq 1/2 + \epsilon$ for large values of $\min\{\chi(G), \chi(H)\}$.