The Intersection of Typical Besicovitch Sets with Lines

Type: Article

Publication Date: 2020-11-01

Citations: 0

DOI: https://doi.org/10.14321/realanalexch.45.2.0453

Abstract

We show that a typical Besicovitch set \(B\) has intersections of measure zero with every line not contained in it. Moreover, every line in \(B\) intersects the union of all the other lines in \(B\) in a set of measure zero.

Locations

  • Real Analysis Exchange - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The intersection of typical Besicovitch sets with lines 2019 Tamás Kátay
+ PDF Chat Non-existence of multi-line Besicovitch sets 2013 Tuomas Orponen
+ PDF Chat On Minimal Besicovitch Arrangements in $${\mathbb {F}_q}^2$$: Statistical Properties and Combinatorial Implications 2019 Stéphane Blondeau Da Silva
+ The Besicovitch weak-packing property 2001 Manav Das
+ On minimal Besicovitch arrangements 2018 Stéphane Blondeau da Silva
+ Nonstandard approximations to Besicovitch sets 2022 Paul Potgieter
+ Covering Space in the Besicovitch Topology 2012 Julien Cervelle
+ Dimensions of weighted Besicovitch sets 2010 Yu Qiong Xie
Zhi Xiong Wen
Min Yu
+ On a Space of Besicovitch Functions 2005 Jozef Bobok
+ PDF Chat Besicovitch-Eggleston Function 2011 Manav Das
+ Besicovitch–Kakeya sets 2016 Christopher J. Bishop
Yuval Peres
+ Continuously parametrized Besicovitch sets in R^n 2011 Esa Järvenpää
Maarit Järvenpää
Tamás Keleti
András Máthé
+ On the intersections of the Besicovitch sets and the Erdös–Rényi sets 2018 Jun Zhang
Peng Li
+ Some results in support of the Kakeya Conjecture 2014 Jonathan M. Fraser
Eric J. Olson
James C. Robinson
+ Some results in support of the Kakeya Conjecture 2014 Jonathan M. Fraser
Eric J. Olson
James C. Robinson
+ On the intersections of the Besicovitch sets and exceptional sets in the Erdős–Rényi limit theorem 2019 Jiaxing Li
Min Wu
+ Theory of Besov Spaces 2018 Yoshihiro Sawano
+ On the generalized Hausdorff dimension of Besicovitch sets 2023 Xianghong Chen
Lixin Yan
Yue Zhong
+ Besicovitch Sets, Rectifiability, and Projections 2020 Alan Chang
+ Besicovitch theory of linearly measurable sets and Fourier analysis 1979 Miguel de Guzmán

Works That Cite This (0)

Action Title Year Authors