Exponential concentration for the number of roots of random trigonometric polynomials

Type: Preprint

Publication Date: 2019-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1912.12051

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Concentration of the number of real roots of random polynomials 2024 Ander Aguirre
Hoi H. Nguyen
Jingheng Wang
+ PDF Chat Non universality for the variance of the number of real roots of random trigonometric polynomials 2018 Vlad Bally
Lucia Caramellino
Guillaume Poly
+ Asymptotics of the variance of the number of real roots of random trigonometric polynomials 2012 Zhonggen Su
Qi-Man Shao
+ Non universality for the variance of the number of real roots of random trigonometric polynomials 2017 Vlad Bally
Lucia Caramellino
Guillaume Poly
+ Non universality for the variance of the number of real roots of random trigonometric polynomials 2017 Vlad Bally
Lucia Caramellino
Guillaume Poly
+ Expected number of real roots of random trigonometric polynomials 2016 Hendrik Flasche
+ Expected number of real roots of random trigonometric polynomials 2016 Hendrik Flasche
+ Expected number of real roots of random trigonometric polynomials 2017 Hendrik Flasche
+ ON THE EXPECTED NUMBER OF REAL ZEROS OF RANDOM TRIGONOMETRIC POLYNOMIALS 1997 K. Farahmand
M. Sambandham
+ PDF Chat Large Deviations for Zeros of Random Polynomials with i.i.d. Exponential Coefficients 2015 Subhroshekhar Ghosh
Ofer Zeitouni
+ Large deviations for zeros of random polynomials with i.i.d. exponential coefficients 2013 Subhro Ghosh
Ofer Zeitouni
+ Large deviations for zeros of random polynomials with i.i.d. exponential coefficients 2013 Subhro Ghosh
Ofer Zeitouni
+ Expected density of complex roots of random polynomials 2001 K. Farahmand
Alexander Grigorash
+ Roots of random polynomials whose coefficients have logarithmic tails 2013 Zakhar Kabluchko
Dmitry Zaporozhets
+ PDF Chat On the lower bound of the number of real roots of a random algebraic equation 1996 Takashi Uno
+ Sums of Exponential Random Variables 2019 Wilfred M Steki
+ Random trigonometric polynomials: universality and non-universality of the variance for the number of real roots 2019 Yen Do
Hoi H. Nguyen
Oanh Nguyen
+ Real roots of random orthogonal polynomials with exponential weights 2022 Yen Do
D. S. Lubinsky
Hoi H. Nguyen
Oanh Kieu Nguyen
Igor E. Pritsker
+ EXPECTED NUMBER OF REAL ROOTS OF CERTAIN GAUSSIAN RANDOM TRIGONOMETRIC POLYNOMIALS 2016 Soudabeh Shemehsavar
K. Farahmand
+ PDF Chat The Mean Number of Real Roots for One Class of Random Polynomials 1981 M. Shenker