Polynomial products modulo primes and applications

Type: Article

Publication Date: 2020-01-02

Citations: 1

DOI: https://doi.org/10.1007/s00605-019-01359-6

Abstract

For any polynomial $$P(x)\in {\mathbb {Z}}[x],$$ we study arithmetic dynamical systems generated by $$\displaystyle {F_P(n)=\mathop {\prod \nolimits _{k\le n}}}P(k)(\text {mod}\ p),$$$$n\ge 1$$. We apply this to improve the lower bound on the number of distinct quadratic fields of the form $${\mathbb {Q}}(\sqrt{F_P(n)})$$ in short intervals $$M\le n\le M+H$$ previously due to Cilleruelo, Luca, Quirós and Shparlinski. As a second application, we estimate the average number of missing values of $$F_P(n)(\text {mod}\ p)$$ for special families of polynomials, generalizing previous work of Banks, Garaev, Luca, Schinzel, Shparlinski and others.

Locations

  • Monatshefte für Mathematik - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Polynomial products modulo primes and applications 2018 Oleksiy Klurman
Marc Munsch
+ Polynomial products modulo primes and applications 2018 Oleksiy Klurman
Marc Munsch
+ Polynomial arithmetic and applications 2005 Victor Shoup
+ Polynomial arithmetic and applications 2008 Victor Shoup
+ Dynamical irreducibility of polynomials in reduction modulo primes 2019 László Mérai
Alina Ostafe
Igor E. Shparlinski
+ PDF Chat On the frequency of primes preserving dynamical irreducibility of polynomials 2024 Alina Ostafe
Igor E. Shparlinski
+ Reductions modulo primes of systems of polynomial equations and algebraic dynamical systems 2017 Carlos D’Andrea
Alina Ostafe
Igor E. Shparlinski
Martı́n Sombra
+ Dynamical irreducibility of polynomials modulo primes 2019 László Mérai
Alina Ostafe
Igor E. Shparlinski
+ Dynamical irreducibility of polynomials modulo primes 2019 László Mérai
Alina Ostafe
Igor E. Shparlinski
+ PDF Chat Prime Numbers 2013 Frans J. Oort
+ PDF Chat Preperiodic points of polynomial dynamical systems over finite fields 2024 Aaron Andersen
Derek Garton
+ On a product of certain primes 2017 Bernd C. Kellner
+ Orbits of polynomial dynamical systems modulo primes 2017 Mei-Chu Chang
Carlos D’Andrea
Alina Ostafe
Igor E. Shparlinski
Martı́n Sombra
+ PDF Chat Quadratic non-residues in short intervals 2015 Sergeĭ Konyagin
Igor E. Shparlinski
+ PDF Chat On primes represented by quadratic polynomials 2008 Stephan Baier
Liangyi Zhao
+ On Primes Represented by Quadratic Polynomials 2007 Stephan Baier
Liangyi Zhao
+ Infinitely many primes in arithmetic progressions: the cyclotomic polynomial method 2002 Shay Gueron
Ran J. Tessler
+ PDF Chat Polynomial Statistics, Necklace Polynomials, and the Arithmetic Dynamical Mordell-Lang Conjecture 2019 Trevor Hyde
+ Quadratic Non-residues in Short Intervals 2013 Sergeĭ Konyagin
Igor E. Shparlinski
+ Quadratic Non-residues in Short Intervals 2013 Sergeĭ Konyagin
Igor E. Shparlinski

Works Cited by This (26)

Action Title Year Authors
+ A note on the products <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mn>1</mml:mn><mml:mi>μ</mml:mi></mml:msup><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mi>μ</mml:mi></mml:msup><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>⋯</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:… 2009 Erhan Gürel
Ali Ulaş Özgür Kişisel
+ On the products<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy… 2013 Yong-Gao Chen
Ming-Liang Gong
Xiao-Zhi Ren
+ On the Value Set of n! Modulo a Prime 2005 William D. Banks
+ Permutations in abelian groups and the sequence <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>n</mml:mi><mml:mi>!</mml:mi><mml:mspace class="nbsp" /><mml:mrow><mml:mo>(</mml:mo><mml:mo>mod</mml:mo><mml:mspace width="0.334em" /><mml:mi>p</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> 2005 Vsevolod F. Lev
+ Some effective cases of the Brauer-Siegel Theorem 1974 H. Stärk
+ PDF Chat On squares in polynomial products 2008 Javier Cilleruelo
Florian Luca
Adolfo Quirós
Igor E. Shparlinski
+ Sur une question d'Erdös et Schinzel, II 1990 Gérald Tenenbaum
+ PDF Chat Squares in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>⋯</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> 2007 Javier Cilleruelo
+ PDF Chat Powers in $\prod\limits_{k=1}^n (ak^{2^l\cdot3^m}+b)$ 2012 Zhongfeng Zhang
+ PDF Chat Perfect powers from products of consecutive terms in arithmetic progression 2009 Kálmán Győry
Lajos Hajdu
Ákos Pintér