Statistics for Gaussian random fields with unknown location and scale using Lipschitz‐Killing curvatures

Type: Article

Publication Date: 2020-11-10

Citations: 6

DOI: https://doi.org/10.1111/sjos.12500

Locations

  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • Scandinavian Journal of Statistics - View

Similar Works

Action Title Year Authors
+ Lipschitz-Killing curvatures of excursion sets for two-dimensional random fields 2019 Hermine Biermé
Elena Di Bernardino
Céline Duval
Anne Estrade
+ A central limit theorem for Lipschitz–Killing curvatures of Gaussian excursions 2017 Dennis Müller
+ A Central Limit Theorem for Lipschitz-Killing Curvatures of Gaussian Excursions 2016 Dennis Müller
+ A Central Limit Theorem for Lipschitz-Killing Curvatures of Gaussian Excursions 2016 Dennis Müller
+ Estimation of Expected Euler Characteristic Curves of Nonstationary Smooth Gaussian Random Fields 2019 Armin Schwartzman
Fabian J. E. Telschow
Dan Cheng
Pratyush Pranav
+ Estimation of Expected Euler Characteristic Curves of Nonstationary Smooth Gaussian Random Fields 2019 Fabian J. E. Telschow
Armin Schwartzman
Dan Cheng
Pratyush Pranav
+ Central Limit Theorem for Lipschitz–Killing Curvatures of Excursion Sets of Gaussian Random Fields 2017 Marie Kratz
Sreekar Vadlamani
+ PDF Chat Estimation of expected Euler characteristic curves of nonstationary smooth random fields 2023 Fabian J. E. Telschow
Dan Cheng
Pratyush Pranav
Armin Schwartzman
+ Estimating thresholding levels for random fields via Euler characteristics 2017 Robert J. Adler
Kevin Bartz
Sam C. Kou
Anthea Monod
+ High-frequency asymptotics for Lipschitz–Killing curvatures of excursion sets on the sphere 2016 Domenico Marinucci
Sreekar Vadlamani
+ PDF Chat CLT for Lipschitz-Killing Curvatures of Excursion Sets of Gaussian Random Fields 2016 Marie Kratz
Sreekar Vadlamani
+ On the perimeter estimation of pixelated excursion sets of 2D anisotropic random fields 2023 Ryan Cotsakis
Elena Di Bernardino
Thomas Opitz
+ The anisotropy of 2D or 3D Gaussian random fields through their Lipschitz-Killing curvature densities 2024 Hermine Biermé
Agnès Desolneux
+ On the excursion area of perturbed Gaussian fields. 2019 Éléna Di Bernardino
Anne Estrade
Maurizia Rossi
+ On the excursion area of perturbed Gaussian fields 2019 Elena Di Bernardino
Anne Estrade
Maurizia Rossi
+ PDF Chat Expected Lipschitz-Killing curvatures for spin random fields and other non-isotropic fields 2024 Francesca Pistolato
Michele Stecconi
+ PDF Chat On the excursion area of perturbed Gaussian fields 2020 Éléna Di Bernardino
Anne Estrade
Maurizia Rossi
+ Estimation of anisotropic Gaussian fields through Radon transform 2006 Hermine Biermé
Frédéric Richard
+ PDF Chat Estimation of anisotropic Gaussian fields through Radon transform 2007 Hermine Biermé
Frédéric Richard
+ A test of Gaussianity based on the Euler characteristic of excursion sets 2017 Éléna Di Bernardino
Anne Estrade
José R. León

Works Cited by This (32)

Action Title Year Authors
+ PDF Chat Excursion probability of certain non-centered smooth Gaussian random fields 2015 Dan Cheng
+ PDF Chat Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence 1977 Murad S. Taqqu
+ PDF Chat Central limit theorems for the excursion set volumes of weakly dependent random fields 2012 Alexander Bulinski
Evgeny Spodarev
Florian Timmermann
+ Quasi-associatedness of a Gaussian system of random vectors 2002 A. P. Shashkin
+ PDF Chat Testing for a Signal with Unknown Location and Scale in a Stationary Gaussian Random Field 1995 David Siegmund
Keith J. Worsley
+ PDF Chat A random-projection based test of Gaussianity for stationary processes 2014 Alicia Nieto-Reyes
Juan A. Cuesta‐Albertos
Fabrice Gamboa
+ Stein–Malliavin approximations for nonlinear functionals of random eigenfunctions on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">S</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math> 2015 Domenico Marinucci
Maurizia Rossi
+ On the rate of convergence for central limit theorems of sojourn times of Gaussian fields 2013 Viet-Hung Pham
+ PDF Chat CHARACTERIZATION OF MAMMARY GLAND TISSUE USING JOINT ESTIMATORS OF MINKOWSKI FUNCTIONALS 2011 Torsten Mattfeldt
Daniel Meschenmoser
Ursa Pantle
Volker Schmidt
+ Rotation and scale space random fields and the Gaussian kinematic formula 2012 Robert J. Adler
Eliran Subag
Jonathan Taylor