An alternative to Plancherel’s criterion for bilinear operators

Type: Article

Publication Date: 2019-01-01

Citations: 2

DOI: https://doi.org/10.4064/bc119-9

Abstract

We prove that bilinear operators associated with $L^q$ multipliers with sufficiently many derivatives in $L^\infty $ are bounded from $L^2\times L^2$ to $L^1$ when $q \lt 4$. In the absence of Plancherel’s identity on $L^1$, the range $q \lt 4$ in the bil

Locations

  • Banach Center Publications - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Multipliers in $L^p$ and interpolation 1965 Walter Littman
+ PDF Chat Unimodular bilinear Fourier multipliers on $$L^p$$ spaces 2020 K. Jotsaroop
Saurabh Shrivastava
+ $L^{p}$ estimates for the bilinear Hilbert transform for $1/2<p\leq2/3$: A counterexample and generalizations to non-smooth symbols 2014 Wei Dai
Guozhen Lu
+ PDF Chat The Marcinkiewicz multiplier condition for bilinear operators 2001 Loukas Grafakos
N. J. Kalton
+ Sharp boundedness of linear and bilinear multiplier operators 2018 정은희
+ The Marcinkiewicz multiplier condition for bilinear operators 2000 Loukas Grafakos
N. J. Kalton
+ PDF Chat Improved bound for the bilinear Bochner–Riesz operator 2018 Eun-Hee Jeong
Sanghyuk Lee
Ana Vargas
+ Weak type $A_p$ estimate for bilinear Calderón–Zygmund operators 2024 Linfei Zheng
+ Notes on bilinear multipliers on Orlicz spaces 2019 Óscar Blasco
Alen Osançlıol
+ Notes on bilinear multipliers on Orlicz spaces 2019 Óscar Blasco
Alen Osançlıol
+ $L^{p}$ estimates for the bilinear Hilbert transform for $1/2 2014 Wei Dai
Guozhen Lu
+ Leibniz-Type Rules for Bilinear Fourier Multiplier Operators with Besov Regularity 2021 Zongguang Liu
Xinfeng Wu
Jiexing Yang
+ The Hörmander multiplier theorem, II: The bilinear local $L^2$ case 2016 Loukas Grafakos
Danqing He
Petr Honzík
+ Linear and bilinear $T(b)$ theorems \`a la Stein 2015 Árpád Bényi
Tadahiro Oh
+ Unimodular bilinear Fourier multipliers on $L^p$ spaces 2020 K. Jotsaroop
Saurabh Shrivastava
+ PDF Chat Approaching Bilinear Multipliers via a Functional Calculus 2018 Błażej Wróbel
+ Linear and bilinear functionals 2008
+ Weak type $A_p$ estimate for bilinear Calderón-Zygmund operators 2023 Linfei Zheng
+ Limited smoothness conditions with mixed norms for bilinear Fourier multipliers 2019 Akihiko Miyachi
Naoto Shida
Naohito Tomita
+ $$M_{p}$$ weights for bilinear Hardy operators on $$\mathbb R ^{n}$$ 2013 Fayou Zhao
Zunwei Fu
Shanzhen Lu