Integrality and cuspidality of pullbacks of nearly holomorphic Siegel Eisenstein series

Type: Article

Publication Date: 2022-01-01

Citations: 2

DOI: https://doi.org/10.5565/publmat6612216

Abstract

We study nearly holomorphic Siegel Eisenstein series of general levels and characters on H 2n , the Siegel upper half space of degree 2n.We prove that the Fourier coefficients of these Eisenstein series (once suitably normalized) lie in the ring of integers of Qp for all sufficiently large primes p.We also prove that the pullbacks of these Eisenstein series to Hn × Hn are cuspidal under certain assumptions.

Locations

  • arXiv (Cornell University) - View - PDF
  • Publicacions Matemàtiques - View
  • Queen Mary Research Online (Queen Mary University of London) - View - PDF

Similar Works

Action Title Year Authors
+ Integrality and cuspidality of pullbacks of nearly holomorphic Siegel Eisenstein series 2019 Ameya Pitale
Abhishek Saha
Ralf Schmidt
+ PDF Chat Nearly holomorphic automorphic forms on Sp2n with sufficiently regular infinitesimal characters and applications 2022 Shuji Horinaga
+ PDF Chat None 2022
+ Nearly holomorphic Eisenstein liftings(Researches on automorphic forms and zeta functions) 1997 信一郎 水本
+ Sums of Fourier coefficients of holomorphic cusp forms over integers without large prime factors 2022 Dan Wang
+ PDF Chat Nearly overconvergent Siegel modular forms 2019 Zheng Liu
+ Fourier coefficients of Eisenstein series for $O^+(2, n + 2)$ 2022 Felix Schaps
+ Cuspidal projections of products of Eisenstein series 2021 William Frendreiss
Jennifer Gao
Austin Lei
Amy Woodall
Hui Xue
Daozhou Zhu
+ On spaces of modular forms spanned by eta-quotients 2013 Jeremy Rouse
John J. Webb
+ On spaces of modular forms spanned by eta-quotients 2013 Jeremy Rouse
John J. Webb
+ Cuspidality of pullbacks of Siegel-Hilbert Eisenstein series on Hermitian symmetric domains 2014 Molly W. Dunkum
Dominic Lanphier
+ Congruences between cusp forms and eisenstein series of half-integral weight 1987 Jannis A. Antoniadis
Winfried Kohnen
+ Cuspidal components of Siegel modular forms for large discrete series representations of $$\textrm{Sp}_4({\mathbb {R}})$$ 2023 Shuji Horinaga
Hiro-aki Narita
+ Estimates for fourier coefficients of siegel cusp forms 1997 Stefan Breulmann
+ Estimates for Fourier coefficients of Siegel cusp forms 1993 Siegfried Böcherer
Winfried Kohnen
+ On the rapid decay of cuspidal automorphic forms 2012 Stephen D. Miller
Wilfried Schmid
+ Characterization of Siegel cusp forms by the growth of their Fourier coefficients 2013 Siegfried Böcherer
Soumya Das
+ On the rapid decay of cuspidal automorphic forms 2011 Stephen D. Miller
Wilfried Schmid
+ On the rapid decay of cuspidal automorphic forms 2011 Stephen D. Miller
Wilfried Schmid
+ On the representations generated by Eisenstein series of weight <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mfrac><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:math> 2019 Shuji Horinaga