Sparse Least Squares Low Rank Kernel Machines

Type: Book-Chapter

Publication Date: 2019-01-01

Citations: 0

DOI: https://doi.org/10.1007/978-3-030-36711-4_33

Locations

  • Lecture notes in computer science - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Sparse Least Squares Low Rank Kernel Machines 2019 Di Xu
Manjing Fang
Xia Hong
Junbin Gao
+ Low-Rank Kernel Subspace Clustering. 2017 Pan Ji
Ian Reid
Ravi Garg
Hongdong Li
Mathieu Salzmann
+ Non-uniform Nyström approximation for sparse kernel regression: Theoretical analysis and experimental evaluation 2022 Qian Zhang
Wei Shi
Steven C. H. Hoi
Zenglin Xu
+ METHODS FOR SPARSE LINEAR LEAST SQUARES PROBLEMS 1976 ÅKE BJÜRCK
+ Sparse reduced-rank regression with covariance estimation 2014 Lisha Chen
Jianhua Z. Huang
+ Sparse and Low-Rank Covariance Matrix Estimation 2014 Shenglong Zhou
Naihua Xiu
Ziyan Luo
Lingchen Kong
+ Robust low-rank multiple kernel learning with compound regularization 2020 He Jiang
Tao Chang-qi
Yao Dong
Ren Xiong
+ Robust Algorithms for Low-Rank and Sparse Matrix Models 2018 Brian E. Moore
+ Sparse multiple kernel learning: Minimax rates with random projection 2023 Wenqi Lu
Zhongyi Zhu
Rui Li
Heng Lian
+ Sparse and low rank approximation via partial regularization: Models, theory and algorithms 2019 Xiaorui Li
+ PDF Chat Low-rank discriminative least squares regression for image classification 2020 Zhe Chen
Xiao‐Jun Wu
Josef Kittler
+ ℓp-norm multiple kernel learning with low-rank kernels 2014 Alain Rakotomamonjy
Sukalpa Chanda
+ Sparse kernel k-means for high-dimensional data 2023 Xin Guan
Yoshikazu Terada
+ Sparse linear models in high dimensions 2019 Martin J. Wainwright
+ Learning low-rank kernel matrices 2006 Brian Kulis
Mátyás A. Sustik
Inderjit S. Dhillon
+ PDF Chat Low Rank Regularization: A review 2020 Zhanxuan Hu
Feiping Nie
Rong Wang
Xuelong Li
+ Sparse regularized local regression 2013 Diego Vidaurre
Concha Bielza
Pedro Larrañaga
+ Low-Rank Approximation of Data Matrices Using Robust Sparse Principal Component Analysis 2024 Pia Pfeiffer
Peter Filzmoser
+ Low-rank decomposition meets kernel learning: A generalized Nyström method 2017 Liang Lan
Kai Zhang
Hancheng Ge
Wei Cheng
Jun Liu
Andreas Rauber
Xiaoli Li
Jun Wang
Hongyuan Zha
+ PDF Chat Nystrom Approximation for Sparse Kernel Methods: Theoretical Analysis and Empirical Evaluation 2015 Zenglin Xu
Rong Jin
Bin Shen
Shenghuo Zhu

Works That Cite This (0)

Action Title Year Authors