Type: Article
Publication Date: 2018-08-30
Citations: 7
DOI: https://doi.org/10.1215/00127094-2018-0024
The Markoff group of transformations is a group Γ of affine integral morphisms, which is known to act transitively on the set of all positive integer solutions to the equation x2+y2+z2=xyz. The fundamental strong approximation conjecture for the Markoff equation states that for every prime p, the group Γ acts transitively on the set X∗(p) of nonzero solutions to the same equation over Z/pZ. Recently, Bourgain, Gamburd, and Sarnak proved this conjecture for all primes outside a small exceptional set. Here, we study a group of permutations obtained by the action of Γ on X∗(p), and show that for most primes, it is the full symmetric or alternating group. We use this result to deduce that Γ acts transitively also on the set of nonzero solutions in a big class of composite moduli. Finally, our result also translates to a parallel in the case r=2 of a well-known theorem of Gilman and Evans regarding "Tr-systems" of PSL(2,p).