Understanding the Limitations of Variational Mutual Information Estimators

Type: Preprint

Publication Date: 2019-01-01

Citations: 98

DOI: https://doi.org/10.48550/arxiv.1910.06222

View

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Understanding the Limitations of Variational Mutual Information Estimators 2019 Jiaming Song
Stefano Ermon
+ Data-Efficient Mutual Information Neural Estimator 2019 Lin Xiao
Indranil Sur
Samuel A. Nastase
Ajay Divakaran
Uri Hasson
Mohamed R. Amer
+ Data-Efficient Mutual Information Neural Estimator 2019 Lin Xiao
Indranil Sur
Samuel A. Nastase
Ajay Divakaran
Uri Hasson
Mohamed R. Amer
+ On Variational Bounds of Mutual Information 2019 Ben Poole
Sherjil Ozair
Aäron van den Oord
Alexander A. Alemi
George Tucker
+ Regularized Mutual Information Neural Estimation 2021 Kwanghee Choi
Siyeong Lee
+ The Role of Mutual Information in Variational Classifiers 2020 Matías Vera
Leonardo Rey Vega
Pablo Piantanida
+ DEMI: Discriminative Estimator of Mutual Information 2020 Ruizhi Liao
Daniel Moyer
Polina Golland
William M. Wells
+ Variational $f$-Divergence and Derangements for Discriminative Mutual Information Estimation 2023 Nunzio A. Letizia
Nicola Novello
Andrea M. Tonello
+ Mutual Information Constraints for Monte-Carlo Objectives 2020 Gábor Melis
András György
Phil Blunsom
+ Mutual Information Constraints for Monte-Carlo Objectives. 2020 Gábor Melis
András György
Phil Blunsom
+ Reducing the Variance of Variational Estimates of Mutual Information by Limiting the Critic's Hypothesis Space to RKHS 2020 P Aditya Sreekar
Ujjwal Tiwari
Anoop Namboodiri
+ Reducing the Variance of Variational Estimates of Mutual Information by Limiting the Critic's Hypothesis Space to RKHS 2020 P Aditya Sreekar
Ujjwal Tiwari
Anoop Namboodiri
+ InfoNCE is a variational autoencoder. 2021 Laurence Aitchison
+ VMI-VAE: Variational Mutual Information Maximization Framework for VAE With Discrete and Continuous Priors 2020 Andriy Serdega
Dae‐Shik Kim
+ PDF Chat Learning Representations by Maximizing Mutual Information in Variational Autoencoders 2020 Ali Lotfi Rezaabad
Sriram Vishwanath
+ Learning Representations by Maximizing Mutual Information in Variational Autoencoders 2019 Ali Lotfi Rezaabad
Sriram Vishwanath
+ Learning Representations by Maximizing Mutual Information in Variational Autoencoders 2019 Ali Lotfi Rezaabad
Sriram Vishwanath
+ PDF Chat Reducing the Variance of Variational Estimates of Mutual Information by Limiting the Critic's Hypothesis Space to RKHS 2021 P Aditya Sreekar
Ujjwal Tiwari
Anoop Namboodiri
+ Neural Entropic Estimation: A faster path to mutual information estimation 2019 Chung Chan
Ali Al-Bashabsheh
Hing Pang Huang
Michael Lim
Da Sun Handason Tam
Chao Zhao
+ Max-Sliced Mutual Information 2023 Dor Tsur
Ziv Goldfeld
Kristjan Greenewald

Cited by (74)

Action Title Year Authors
+ Density Ratio Estimation via Infinitesimal Classification 2021 Kristy Choi
Chenlin Meng
Yang Song
Stefano Ermon
+ Learning Conditional Invariance through Cycle Consistency 2021 Maxim Samarin
Vitali Nesterov
Mario Wieser
Aleksander Wieczorek
Sonali Parbhoo
Volker Röth
+ PDF Chat Multimodal Representation Learning via Maximization of Local Mutual Information 2021 Ruizhi Liao
Daniel Moyer
Miriam Cha
Keegan Quigley
Seth J. Berkowitz
Steven Horng
Polina Golland
William M. Wells
+ PDF Chat Learning View-Disentangled Human Pose Representation by Contrastive Cross-View Mutual Information Maximization 2021 L. Zhao
Yuxiao Wang
Jiaping Zhao
Liangzhe Yuan
Jennifer J. Sun
Florian Schroff
Hartwig Adam
Xi Peng
Dimitris Metaxas
Ting Liu
+ PDF Chat Learning Conditional Invariance Through Cycle Consistency 2021 Maxim Samarin
Vitali Nesterov
Mario Wieser
Aleksander Wieczorek
Sonali Parbhoo
Volker Röth
+ No MCMC for me: Amortized sampling for fast and stable training of energy-based models 2021 Will Grathwohl
Jacob Kelly
Milad Hashemi
Mohammad Norouzi
Kevin Swersky
David Duvenaud
+ Discriminative Mutual Information Estimators for Channel Capacity Learning 2021 Nunzio A. Letizia
Andrea M. Tonello
+ PDF Chat Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships 2022 Nina Kudryashova
Theoklitos Amvrosiadis
Nathalie Dupuy
Nathalie L. Rochefort
Arno Onken
+ A Novel Information-Theoretic Objective to Disentangle Representations for Fair Classification 2023 Pierre Colombo
Nathan Noiry
Guillaume Staerman
Pablo Piantanida
+ PDF Chat MAPPING: Debiasing Graph Neural Networks for Fair Node Classification with Limited Sensitive Information Leakage 2024 Ying Song
Balaji Palanisamy
+ A Novel Information Theoretic Objective to Disentangle Representations for Fair Classification 2023 Pierre Colombo
Nathan Noiry
Guillaume Staerman
Pablo Piantanida
+ DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial Estimation 2021 Alexandre Ramé
Matthieu Cord
+ Neural Mutual Information Estimation for Channel Coding: State-of-the-Art Estimators, Analysis, and Performance Comparison 2020 Rick Fritschek
Rafael F. Schaefer
Gerhard Wunder
+ AstroCLIP: Cross-Modal Pre-Training for Astronomical Foundation Models 2023 François Lanusse
Liam Parker
Siavash Golkar
Miles Cranmer
Alberto Bietti
Michael Eickenberg
Géraud Krawezik
Michael T. McCabe
Ruben Ohana
M. Pettee
+ C-MI-GAN : Estimation of Conditional Mutual Information using MinMax formulation 2020 Arnab Kumar Mondal
Arnab Bhattacharya
Sudipto Mukherjee
Prathosh AP
Sreeram Kannan
Himanshu Asnani
+ PDF Chat AstroCLIP: A cross-modal foundation model for galaxies 2024 Liam Parker
François Lanusse
Siavash Golkar
Leopoldo Sarra
Miles Cranmer
Alberto Bietti
Michael Eickenberg
Géraud Krawezik
Michael T. McCabe
Rudy Morel
+ PDF Chat Learning Disentangled Textual Representations via Statistical Measures of Similarity 2022 Pierre Colombo
Guillaume Staerman
Nathan Noiry
Pablo Piantanida
+ PDF Chat A Reverse Jensen Inequality Result with Application to Mutual Information Estimation 2021 Gerhard Wunder
Benedikt Gros
Rick Fritschek
Rafael F. Schaefer
+ PDF Chat InfoAT: Improving Adversarial Training Using the Information Bottleneck Principle 2022 Mengting Xu
Tao Zhang
Zhongnian Li
Daoqiang Zhang
+ Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive Learners With FlatNCE 2021 Junya Chen
Zhe Gan
Xuan Li
Qing Guo
Li‐Qun Chen
Shuyang Gao
Tagyoung Chung
Yi Xu
Belinda Zeng
Wenlian Lu
+ Boosting Semi-supervised Image Segmentation with Global and Local Mutual Information Regularization 2021 Jizong Peng
Marco Pedersoli
Christian Desrosiers
+ PDF Chat Disentangled Information Bottleneck 2021 Ziqi Pan
Li Niu
Jianfu Zhang
Liqing Zhang
+ PDF Chat Neural Mutual Information Estimation for Channel Coding: State-of-the-Art Estimators, Analysis, and Performance Comparison 2020 Rick Fritschek
Rafael F. Schaefer
Gerhard Wunder
+ PDF Chat Neural Estimation and Optimization of Directed Information Over Continuous Spaces 2023 Dor Tsur
Ziv Aharoni
Ziv Goldfeld
Haim H. Permuter
+ PDF Chat Neural Capacity Estimators: How Reliable Are They? 2022 Farhad Mirkarimi
Stefano Rini
Nariman Farsad
+ PDF Chat AID-Purifier: A Light Auxiliary Network for Boosting Adversarial Defense 2022 Duhun Hwang
Eunjung Lee
Wonjong Rhee
+ Self-supervised Learning from a Multi-view Perspective 2020 Yao-Hung Hubert Tsai
Yue Wu
Ruslan Salakhutdinov
Louis‐Philippe Morency
+ PDF Chat Disentangling Label Distribution for Long-tailed Visual Recognition 2021 Youngkyu Hong
Seungju Han
Kwanghee Choi
Seokjun Seo
Beomsu Kim
Buru Chang
+ Improving Multimodal fusion via Mutual Dependency Maximisation 2021 Pierre Colombo
Émile Chapuis
Matthieu Labeau
Chloé Clavel
+ PDF Chat Bottleneck Problems: An Information and Estimation-Theoretic View 2020 Shahab Asoodeh
Flávio P. Calmon
+ PDF Chat MICAL: Mutual Information-Based CNN-Aided Learned Factor Graphs for Seizure Detection From EEG Signals 2023 Bahareh Salafian
Eyal Fishel Ben-Knaan
Nir Shlezinger
Sandrine de Ribaupierre
Nariman Farsad
+ InfoShape: Task-Based Neural Data Shaping via Mutual Information 2023 Homa Esfahanizadeh
William K.K. Wu
Manya Ghobadi
Regina Barzilay
Muriel Médard
+ No MCMC for me: Amortized sampling for fast and stable training of energy-based models. 2020 Will Grathwohl
Jacob Kelly
Milad Hashemi
Mohammad Norouzi
Kevin Swersky
David Duvenaud
+ PDF Chat Contrastive Learning for Weakly Supervised Phrase Grounding 2020 Tanmay Gupta
Arash Vahdat
Gal Chechik
Xiaodong Yang
Jan Kautz
Derek Hoiem
+ Learning View-Disentangled Human Pose Representation by Contrastive Cross-View Mutual Information Maximization 2020 L. Zhao
Yuxiao Wang
Jiaping Zhao
Liangzhe Yuan
Jennifer J. Sun
Florian Schroff
Hartwig Adam
Xi Peng
Dimitris Metaxas
Ting Liu
+ Disentangling Label Distribution for Long-tailed Visual Recognition 2020 Youngkyu Hong
Seungju Han
Kwanghee Choi
Seokjun Seo
Beomsu Kim
Buru Chang
+ Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness 2020 L. Zhao
Ting Liu
Xi Peng
Dimitris Metaxas
+ Cross-Modal Contrastive Learning for Text-to-Image Generation 2021 Han Zhang
Jing Yu Koh
Jason Baldridge
Honglak Lee
Yinfei Yang
+ A Reverse Jensen Inequality Result with Application to Mutual Information Estimation. 2021 Gerhard Wunder
Benedikt Groß
Rick Fritschek
Rafael F. Schaefer
+ Contrastive Learning for Weakly Supervised Phrase Grounding 2020 Tanmay Gupta
Arash Vahdat
Gal Chechik
Xiaodong Yang
Jan Kautz
Derek Hoiem

Citing (24)

Action Title Year Authors
+ NICE: Non-linear Independent Components Estimation 2014 Laurent Dinh
David Krueger
Yoshua Bengio
+ PDF Chat Entropy and information in neural spike trains: Progress on the sampling problem 2004 Ilya Nemenman
William Bialek
Rob de Ruyter van Steveninck
+ Asymptotic evaluation of certain markov process expectations for large time, II 1975 M. D. Donsker
S. R. S. Varadhan
+ PDF Chat Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization 2010 XuanLong Nguyen
Martin J. Wainwright
Michael I. Jordan
+ Density estimation using Real NVP 2016 Laurent Dinh
Jascha Sohl‐Dickstein
Samy Bengio
+ Deep Variational Information Bottleneck 2016 Alexander A. Alemi
Ian Fischer
Joshua V. Dillon
Kevin Murphy
+ PDF Chat Boosted Generative Models 2018 Aditya Grover
Stefano Ermon
+ MINE: Mutual Information Neural Estimation. 2018 Ishmael Belghazi
Sai Rajeswar
Aristide Baratin
R Devon Hjelm
Aaron Courville
+ The Information Autoencoding Family: A Lagrangian Perspective on Latent Variable Generative Models 2018 Shengjia Zhao
Jiaming Song
Stefano Ermon
+ Representation Learning with Contrastive Predictive Coding 2018 Aäron van den Oord
Yazhe Li
Oriol Vinyals
+ Formal Limitations on the Measurement of Mutual Information 2018 David McAllester
Karl Stratos
+ Towards a Definition of Disentangled Representations 2018 Irina Higgins
David Amos
David Pfau
Sébastien Racanière
Löıc Matthey
Danilo Jimenez Rezende
Alexander Lerchner
+ On Variational Bounds of Mutual Information 2019 Ben Poole
Sherjil Ozair
Aäron van den Oord
Alexander A. Alemi
George Tucker
+ Learning deep representations by mutual information estimation and maximization 2018 R Devon Hjelm
Alex Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
+ Efficient Estimation of Mutual Information for Strongly Dependent Variables 2014 Shuyang Gao
Greg Ver Steeg
Aram Galstyan
+ Estimating Mutual Information for Discrete-Continuous Mixtures 2017 Weihao Gao
Sreeram Kannan
Sewoong Oh
Pramod Viswanath
+ InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets 2016 Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
+ Bias and Generalization in Deep Generative Models: An Empirical Study 2018 Shengjia Zhao
Hongyu Ren
Arianna Yuan
Jiaming Song
Noah D. Goodman
Stefano Ermon
+ PDF Chat Curiosity-Driven Exploration by Self-Supervised Prediction 2017 Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
+ f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization 2016 Sebastian Nowozin
Botond Cseke
Ryota Tomioka
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
+ PDF Chat Deep learning and the information bottleneck principle 2015 Naftali Tishby
Noga Zaslavsky
+ On Mutual Information Maximization for Representation Learning 2019 Michael Tschannen
Josip Djolonga
Paul K. Rubenstein
Sylvain Gelly
Mario Lučić
+ CCMI : Classifier based Conditional Mutual Information Estimation 2019 Sudipto Mukherjee
Himanshu Asnani
Sreeram Kannan