Proof of the $(n/2-n/2-n/2)$ Conjecture for Large $n$

Type: Article

Publication Date: 2011-02-04

Citations: 31

DOI: https://doi.org/10.37236/514

Abstract

A conjecture of Loebl, also known as the $(n/2 - n/2 - n/2)$ Conjecture, states that if $G$ is an $n$-vertex graph in which at least $n/2$ of the vertices have degree at least $n/2$, then $G$ contains all trees with at most $n/2$ edges as subgraphs. Applying the Regularity Lemma, Ajtai, Komlós and Szemerédi proved an approximate version of this conjecture. We prove it exactly for sufficiently large $n$. This immediately gives a tight upper bound for the Ramsey number of trees, and partially confirms a conjecture of Burr and Erdős.

Locations

  • The Electronic Journal of Combinatorics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat An approximate version of the Loebl–Komlós–Sós conjecture 2011 Diana Piguet
Maya Stein
+ An approximate version of the Loebl-Komlos-Sos conjecture 2007 Diana Piguet
Maya Stein
+ An approximate version of the Loebl-Komlos-Sos conjecture 2007 Diana Piguet
Maya Stein
+ PDF Chat The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs 2015 Endre Szemerédi
Maya Stein
Miklós Simonovits
Diana Piguet
Jan Hladký
+ PDF Chat On Erdős-Sós Conjecture for Trees of Large Size 2016 Agnieszka Goerlich
Andrzej Żak
+ Upper Bounds for a Ramsey Theorem for Trees 1994 C.J. Swanepoel
L. M. Pretorius
+ Erdős-Ko-Rado Theorems for a Family of Trees 2015 Carl Feghali
Matthew Johnson
Daniel Thomas
+ Szemerédi’s Regularity Lemma for Sparse Graphs 1997 Yoshiharu Kohayakawa
+ An upper bound on the Ramsey number of trees 1987 András Gyárfás
Zsolt Tuza
+ Resolution of the Erdős-Sauer problem on regular subgraphs 2022 Oliver Janzer
Benny Sudakov
+ Algorithmic Aspects of Regularity 2000 Yoshiharu Kohayakawa
V. Rödl
+ A version of the Loebl–Komlós–Sós conjecture for skew trees 2020 Tereza Klimošová
Diana Piguet
Václav Rozhoň
+ A version of the Loebl-Komlós-Sós conjecture for skewed trees 2018 Tereza Klimošová
Diana Piguet
Václav Rozhoň
+ A new proof of the KŁR conjecture 2021 Rajko Nenadov
+ The Szemerédi Regularity Lemma 2017 Emma Everett
+ PDF Chat Proof of Halin’s normal spanning tree conjecture 2021 Max Pitz
+ Ramsey numbers of bounded degree trees versus general graphs 2023 Richard Montgomery
Matías Pavez‐Signé
Jun Yan
+ On a Ramsey-Turán variant of the Hajnal-Szemerédi theorem 2018 Rajko Nenadov
Yanitsa Pehova
+ Ramsey Goodness and Beyond 2007 Vladimir Nikiforov
Cecil C. Rousseau
+ On a Ramsey-Turán variant of the Hajnal-Szemerédi theorem 2018 Rajko Nenadov
Yanitsa Pehova