Noisy, Greedy and Not So Greedy k-means++

Type: Preprint

Publication Date: 2019-01-01

Citations: 6

DOI: https://doi.org/10.48550/arxiv.1912.00653

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Noisy k-means++ Revisited 2023 Christoph Grunau
Ahmet Alper Özüdoğru
Václav Rozhoň
+ A Nearly Tight Analysis of Greedy k-means++ 2022 Christoph Grunau
Ahmet Alper Özüdoğru
Václav Rozhoň
Jakub Tětek
+ PDF Chat A Nearly Tight Analysis of Greedy k-means++ 2023 Christoph Grunau
Ahmet Alper Özüdoğru
Václav Rozhoň
Jakub Tětek
+ Improved Outlier Robust Seeding for k-means 2023 Amit Deshpande
Rameshwar Pratap
+ A simple D^2-sampling based PTAS for k-means and other Clustering Problems 2012 Ragesh Jaiswal
Amit Kumar
Sandeep Sen
+ Fast and Accurate $k$-means++ via Rejection Sampling 2020 Vincent Cohen-Addad
Silvio Lattanzi
Ashkan Norouzi-Fard
Christian Sohler
Ola Svensson
+ Fast and Accurate $k$-means++ via Rejection Sampling 2020 Vincent Cohen-Addad
Silvio Lattanzi
Ashkan Norouzi-Fard
Christian Sohler
Ola Svensson
+ Fast and Accurate $k$-means++ via Rejection Sampling 2020 Vincent Cohen-Addad
Silvio Lattanzi
Ashkan Norouzi-Fard
Christian Sohler
Ola Svensson
+ PDF Chat A New Rejection Sampling Approach to $k$-$\mathtt{means}$++ With Improved Trade-Offs 2025 Poojan Shah
Sanjay Agrawal
Ragesh Jaiswal
+ Adapting $k$-means algorithms for outliers 2020 Christoph Grunau
Václav Rozhoň
+ A bad 2-dimensional instance for k-means++ 2013 Ragesh Jaiswal
Prachi Jain
Saumya Yadav
+ A bad 2-dimensional instance for k-means++ 2013 Ragesh Jaiswal
Prachi Jain
Saumya Yadav
+ Adapting k-means algorithms for outliers. 2020 Christoph Grunau
Václav Rozhoň
+ A Constant-Factor Bi-Criteria Approximation Guarantee for $k$-means++ 2016 Dennis Wei
+ k-means++: few more steps yield constant approximation 2020 Davin Choo
Christoph Grunau
Julian Portmann
Václav Rozhoň
+ A tight lower bound instance for k-means++ in constant dimension 2014 Anup Bhattacharya
Ragesh Jaiswal
Nir Ailon
+ On Sampling Based Algorithms for k-Means. 2020 Anup Bhattacharya
Dishant Goyal
Ragesh Jaiswal
Amit Kumar
+ Fast Noise Removal for $k$-Means Clustering 2020 Sungjin Im
Mahshid Montazer Qaem
Benjamin Moseley
Xiaorui Sun
Rudy Zhou
+ Provably noise-robust, regularised $k$-means clustering 2017 Shrinu Kushagra
Nicole McNabb
Yaoliang Yu
Shai Ben-David
+ No-substitution k-means Clustering with Adversarial Order 2020 Robi Bhattacharjee
Michal Moshkovitz