Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
A Stochastic Tensor Method for Non-convex Optimization
Aurélien Lucchi
,
Jonas Köhler
Type:
Preprint
Publication Date:
2019-11-23
Citations:
8
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
A Sub-sampled Tensor Method for Non-convex Optimization
2019
Aurélien Lucchi
Jonas Köhler
+
PDF
Chat
A sub-sampled tensor method for nonconvex optimization
2022
Aurélien Lucchi
Jonas Köhler
+
PDF
Chat
Tensor Methods for Minimizing Convex Functions with Hölder Continuous Higher-Order Derivatives
2020
Geovani Nunes Grapiglia
Yu. Nesterov
+
The global rate of convergence for optimal tensor methods in smooth convex optimization
2018
Alexander Gasnikov
Pavel Dvurechensky
Eduard Gorbunov
Evgeniya Vorontsova
Daniil Selikhanovych
César A. Uribe
+
The global rate of convergence for optimal tensor methods in smooth convex optimization
2018
Alexander Gasnikov
Pavel Dvurechensky
Eduard Gorbunov
Evgeniya Vorontsova
Daniil Selikhanovych
César A. Uribe
+
PDF
Chat
Optimal Tensor Methods in Smooth Convex and Uniformly Convex Optimization
2019
Alexander Gasnikov
Pavel Dvurechensky
Eduard Gorbunov
Evgeniya Vorontsova
Daniil Selikhanovych
César A. Uribe
+
Inexact Tensor Methods and Their Application to Stochastic Convex Optimization
2020
Artem Agafonov
Dmitry Kamzolov
Pavel Dvurechensky
Alexander Gasnikov
Martin Takáč
+
PDF
Chat
Inexact tensor methods and their application to stochastic convex optimization
2023
Artem Agafonov
Dmitry Kamzolov
Pavel Dvurechensky
Alexander Gasnikov
Martin Takáč
+
Tensor Decompositions using Stochastic and Deterministic Optimization
2023
Jeremy B. Myers
Daniel Dunlavy
+
PDF
Chat
Stochastic first-order methods for convex and nonconvex functional constrained optimization
2022
Digvijay Boob
Qi Deng
Guanghui Lan
+
Expected Residual Minimization Method for Stochastic Tensor Variational Inequalities
2022
Tong-tong Shang
Guo-ji Tang
+
A Hybrid Method for Tensor Decompositions that Leverages Stochastic and Deterministic Optimization
2022
Jeremy B. Myers
Daniel Dunlavy
+
Expected Residual Minimization Method for a Class of Stochastic Tensor Variational Inequalities
2024
Jianxun Liu
Zhao-Feng Lan
Shengjie Li
+
Tensor Methods for Minimizing Functions with H\"{o}lder Continuous Higher-Order Derivatives
2019
Geovani Nunes Grapiglia
Yurii Nesterov
+
Advancing the lower bounds: An accelerated, stochastic, second-order method with optimal adaptation to inexactness
2023
Artem Agafonov
Dmitry Kamzolov
Alexander Gasnikov
Ali Kavis
Kimon Antonakopoulos
Volkan Cevher
Martin Takáč
+
PDF
Chat
Optimization landscape of Tucker decomposition
2020
Abraham Frandsen
Rong Ge
+
Hybrid Methods for Tensor Decompositions that Leverage Stochastic and Deterministic Optimization
2023
Jeremy B. Myers
Daniel Dunlavy
+
Tensor decompositions in convex optimization problems.
2011
Antonio Falcó
Anthony Nouy
+
A Second Order Method for Nonconvex Optimization
2017
Santiago Paternain
Aryan Mokhtari
Ribeiro Alejandro
+
Convex Stochastic Optimization
2024
Teemu Pennanen
Ari-Pekka Perkkiö
Works That Cite This (8)
Action
Title
Year
Authors
+
Inexact Tensor Methods with Dynamic Accuracies
2020
Nikita Doikov
Yurii Nesterov
+
PDF
Chat
Inexact tensor methods and their application to stochastic convex optimization
2023
Artem Agafonov
Dmitry Kamzolov
Pavel Dvurechensky
Alexander Gasnikov
Martin Takáč
+
PDF
Chat
Accelerated Meta-Algorithm for Convex Optimization Problems
2021
Alexander Gasnikov
Darina Dvinskikh
Pavel Dvurechensky
Dmitry Kamzolov
Vladislav Matyukhin
Dmitry Pasechnyuk
Nazarii Tupitsa
Alexey Chernov
+
PDF
Chat
Convergence analysis of stochastic higher-order majorization–minimization algorithms
2023
Daniela Lupu
Ion Necoara
+
PDF
Chat
Recent Theoretical Advances in Non-Convex Optimization
2022
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
+
PDF
Chat
An adaptive high order method for finding third-order critical points of nonconvex optimization
2022
Zhu Xihua
Jiangze Han
Bo Jiang
+
On the Oracle Complexity of Higher-Order Smooth Non-Convex Finite-Sum Optimization
2021
Nicolas Emmenegger
Rasmus Kyng
Ahad N. Zehmakan
+
Convergence analysis of stochastic higher-order majorization-minimization algorithms
2021
Daniela Lupu
Ion Necoara
Works Cited by This (46)
Action
Title
Year
Authors
+
Spectral norm of random tensors
2014
Ryota Tomioka
Taiji Suzuki
+
Trust Region Methods
2000
Andrew R. Conn
Nicholas I. M. Gould
Philippe L. Toint
+
PDF
Chat
A linear-time algorithm for trust region problems
2015
Elad Hazan
Tomer Koren
+
Estimate sequence methods: extensions and approximations
2009
Michel Baes
+
Accelerating the cubic regularization of Newton’s method on convex problems
2007
Yu. Nesterov
+
PDF
Chat
On the Use of Stochastic Hessian Information in Optimization Methods for Machine Learning
2011
Richard H. Byrd
Gillian M. Chin
Will Neveitt
Jorge Nocedal
+
Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity
2010
Coralia Cartis
Nicholas I. M. Gould
Philippe L. Toint
+
Cubic regularization of Newton method and its global performance
2006
Yurii Nesterov
B. T. Polyak
+
PDF
Chat
Most Tensor Problems Are NP-Hard
2013
Christopher J. Hillar
Lek‐Heng Lim
+
A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets
2012
Nicolas Le Roux
Mark Schmidt
Francis Bach