Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model

Type: Article

Publication Date: 2019-12-18

Citations: 20

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model. 2019 Wenbo Gong
Sebastian Tschiatschek
Richard E. Turner
Sebastian Nowozin
José Miguel Hernández-Lobato
Cheng Zhang
+ Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model 2019 Wenbo Gong
Sebastian Tschiatschek
Richard E. Turner
Sebastian Nowozin
José Miguel Hernández-Lobato
Cheng Zhang
+ Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo 2022 Ignacio Peis
Chao Ma
José Miguel Hernández-Lobato
+ HyperImpute: Generalized Iterative Imputation with Automatic Model Selection 2022 Daniel Jarrett
Bogdan Cebere
Tennison Liu
Alicia Curth
Mihaela van der Schaar
+ Leveraging variational autoencoders for multiple data imputation 2022 Breeshey Roskams-Hieter
Jude Wells
Sara Wade
+ Fed-MIWAE: Federated Imputation of Incomplete Data Via Deep Generative Models 2024 Irène Balelli
Aude Sportisse
Francesco Cremonesi
Pierre‐Alexandre Mattei
Marco Lorenzi
+ IGNITE: Individualized GeNeration of Imputations in Time-series Electronic health records 2024 Ghadeer O. Ghosheh
Jin Li
Tingting Zhu
+ Leveraging the Exact Likelihood of Deep Latent Variable Models 2018 Pierre‐Alexandre Mattei
Jes Frellsen
+ Leveraging the Exact Likelihood of Deep Latent Variable Models 2018 Pierre‐Alexandre Mattei
Jes Frellsen
+ EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE 2018 Chao Ma
Sebastian Tschiatschek
Konstantina Palla
José Miguel Hernández-Lobato
Sebastian Nowozin
Cheng Zhang
+ VAE-BRIDGE: Variational Autoencoder Filter for Bayesian Ridge Imputation of Missing Data 2020 Ricardo Cardoso Pereira
Pedro Henriques Abreu
Pedro Pereira Rodrigues
+ PDF Chat Gaussian Processes for Missing Value Imputation 2022 Bahram Jafrasteh
Daniel Hernández-Lobato
Simón Pedro Lubián‐López
Isabel Benavente-Fernánde
+ Learning Conditional Variational Autoencoders with Missing Covariates 2022 Siddharth Ramchandran
Gleb Tikhonov
Otto Lönnroth
Pekka Tiikkainen
Harri Lähdesmäki
+ EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models. 2021 Ma Qi
Sujit K. Ghosh
+ EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models 2021 Qi Ma
Sujit K. Ghosh
+ GP-VAE: Deep Probabilistic Time Series Imputation 2019 Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
+ Unsupervised Imputation of Non-ignorably Missing Data Using Importance-Weighted Autoencoders 2021 David K. Lim
Naim U. Rashid
Junier B. Oliva
Joseph G. Ibrahim
+ PDF Chat Unsupervised Imputation of Non-ignorably Missing Data Using Importance-Weighted Autoencoders 2024 David K. Lim
Naim U. Rashid
Junier B. Oliva
Joseph G. Ibrahim
+ Longitudinal Variational Autoencoder 2020 Siddharth Ramchandran
Gleb Tikhonov
Kalle Kujanpää
Miika Koskinen
Harri Lähdesmäki
+ MIWAE: Deep Generative Modelling and Imputation of Incomplete Data 2018 Pierre‐Alexandre Mattei
Jes Frellsen

Works That Cite This (16)

Action Title Year Authors
+ PDF Chat Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference 2021 Jiansheng Fang
Xiaoqing Zhang
Yan Hu
Yanwu Xu
Ming Yang
Jiang Liu
+ PDF Chat Educational Question Mining At Scale: Prediction, Analysis and Personalization 2021 Zichao Wang
Sebastian Tschiatschek
Simon Woodhead
José Miguel Hernández-Lobato
Simon Peyton Jones
Richard G. Baraniuk
Cheng Zhang
+ Active Feature Acquisition with Generative Surrogate Models 2020 Yang Li
Junier B. Oliva
+ Reinforcement Learning with Efficient Active Feature Acquisition 2020 Haiyan Yin
Yingzhen Li
Sinno Jialin Pan
Cheng Zhang
Sebastian Tschiatschek
+ VarFA: A Variational Factor Analysis Framework For Efficient Bayesian Learning Analytics 2020 Zichao Wang
Yi Gu
Andrew Lan
Richard G. Baraniuk
+ A systematic review of machine learning-based missing value imputation techniques 2021 Tressy Thomas
Enayat Rajabi
+ PDF Chat Conservative Policy Construction Using Variational Autoencoders for Logged Data With Missing Values 2022 Mahed Abroshan
Kai Hou Yip
Cem Tekin
Mihaela van der Schaar
+ Adaptive Covariate Acquisition for Minimizing Total Cost of Classification 2020 Daniel Andrade
Yuzuru Okajima
+ A review of uncertainty quantification in deep learning: Techniques, applications and challenges 2021 Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
Mohammad Ghavamzadeh
Paul Fieguth
Xiaochun Cao
Abbas Khosravi
U. Rajendra Acharya
+ Contextual HyperNetworks for Novel Feature Adaptation 2021 Angus Lamb
Evgeny Saveliev
Yingzhen Li
Sebastian Tschiatschek
Camilla Longden
Simon Woodhead
José Miguel Hernández-Lobato
Richard E. Turner
Pashmina Cameron
Cheng Zhang

Works Cited by This (0)

Action Title Year Authors