The Leibniz rule for the Dirichlet and the Neumann Laplacian

Type: Article

Publication Date: 2023-03-01

Citations: 2

DOI: https://doi.org/10.2748/tmj.20211112

Abstract

We study the bilinear estimates in the Sobolev spaces with the Dirichlet and the Neumann boundary condition. The optimal regularity is revealed to get such estimates in the half space case, which is related to not only smoothness of functions and but also boundary behavior. The crucial point for the proof is how to handle boundary values of functions and their derivatives.

Locations

  • Tohoku Mathematical Journal - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The Leibniz rule for the Dirichlet and the Neumann Laplacian 2019 Tsukasa Iwabuchi
+ PDF Chat Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules 2012 Frédéric Bernicot
Diego Maldonado
Kabe Moen
Virginia Naibo
+ PDF Chat Bilinear Sobolev-Poincare inequalities and Leibniz-type rules 2014 Frédéric Bernicot
Diego Maldonado
Kabe Moen
Virginia Naibo
+ The Dirichlet Integral in Sobolev Spaces 1998 Mariano Giaquinta
Giuseppe Modica
Jiří Souček
+ PDF Chat Functional calculus on weighted Sobolev spaces for the Laplacian on the half-space 2024 Nick Lindemulder
Emiel Lorist
Floris Roodenburg
Mark Veraar
+ Weak derivatives and Sobolev spaces 2009 Eric T. Sawyer
+ Two Weight Estimates for the Single Layer Potential on Lipschitz Surfaces with Small Lipschitz Constant 2014 Johan Thim
+ Two Weight Estimates for the Single Layer Potential on Lipschitz Surfaces with Small Lipschitz Constant 2014 Johan Thim
+ Weak Derivatives and Poincaré–Sobolev Estimates 2015
+ Hardy and Sobolev inequalities in the half space 2019 Yoshihiro Mizuta
Tetsu Shimomura
+ Hardy-Littlewood Inequalities for Riesz's Potential : Low bounds estimations for different powers 2009 E. Ostrovsky L. Sirota
+ Leibniz-Type Rules for Bilinear Fourier Multiplier Operators with Besov Regularity 2021 Zongguang Liu
Xinfeng Wu
Jiexing Yang
+ Half-Dirichlet problems for dirac operators in lipschitz domains 2001 Marius Mitrea
+ Sobolev spaces 1987 Joseph Wloka
+ The Hardy–Littlewood–Sobolev inequality for (β,γ)-distance Riesz potentials 2003 İnan Çinar
Hakkı Duru
+ Sobolev Spaces 2023 Michael E. Taylor
+ A note on bilinear estimates in the Sobolev spaces 2019 Jishan Fan
Tohru Ozawa
+ Functional Analysis, Sobolev Spaces, and Calculus of Variations 2024 Pablo Pedregal
+ The Hardy-Sobolev inequalities 2013 Nassif Ghoussoub
Amir Moradifam
+ Sobolev Spaces 2021 George C. Hsiao
Wolfgang L. Wendland