Universality of Euler flows and flexibility of Reeb embeddings

Type: Article

Publication Date: 2023-06-12

Citations: 17

DOI: https://doi.org/10.1016/j.aim.2023.109142

Locations

  • Advances in Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • UPCommons (Polytechnic University of Catalonia) - View - PDF
  • DIGITAL.CSIC (Spanish National Research Council (CSIC)) - View - PDF
  • Dipòsit Digital de la Universitat de Barcelona (Universitat de Barcelona) - View - PDF
  • UPCommons institutional repository (Universitat Politècnica de Catalunya) - View - PDF

Similar Works

Action Title Year Authors
+ Universality of Euler flows and flexibility of Reeb embeddings 2019 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
Francisco Presas
+ PDF Chat Reeb Embeddings and Universality of Euler Flows 2021 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
Francisco Presas
+ Looking at Euler flows through a contact mirror: Universality and undecidability 2023 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
+ PDF Chat Turing Universality of the Incompressible Euler Equations and a Conjecture of Moore 2021 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
+ Looking at Euler flows through a contact mirror: Universality and undecidability 2021 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
+ Computability and Beltrami fields in Euclidean space 2021 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
+ PDF Chat Computability and Beltrami fields in Euclidean space 2022 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
+ PDF Chat Steady Euler Flows on $${\mathbb {R}}^3$$ with Wild and Universal Dynamics 2023 Pierre Berger
Anna Florio
Daniel Peralta‐Salas
+ Steady Euler flows on $\mathbb{R}^3$ with wild and universal dynamics 2022 Pierre Berger
Anna Florio
Daniel Peralta‐Salas
+ PDF Chat Computability and Beltrami fields in Euclidean space 2021 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
+ The geometry and topology of steady Euler flows, integrability and singular geometric structures 2021 Robert Cardona Aguilar
+ A note on the Turing universality of homogeneous potential wells and geodesible flows 2020 Khang Manh Huynh
+ A note on the Turing universality of homogeneous potential wells and geodesible flows 2020 Khang Manh Huynh
+ PDF Chat On the universality of the incompressible Euler equation on compact manifolds 2018 Terence Tao
+ On the universality of the incompressible Euler equation on compact manifolds 2017 Terence Tao
+ Contact Topology and Hydrodynamics 1997 John B. Etnyre
Robert Ghrist
+ PDF Chat Towards a Fluid computer 2024 Robert Cardona
Eva Miranda
Daniel Peralta‐Salas
+ On the universality of the incompressible Euler equation on compact manifolds, II. Non-rigidity of Euler flows 2019 Terence Tao
+ PDF Chat Steady Euler flows and Beltrami fields in high dimensions 2020 Robert Cardona
+ Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture 2000 John B. Etnyre
Robert Ghrist