Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
On the computation of counterfactual explanations -- A survey
André Artelt
,
Barbara Hammer
Type:
Preprint
Publication Date:
2019-11-15
Citations:
17
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
On the computation of counterfactual explanations -- A survey
2019
André Artelt
Barbara Hammer
+
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
2020
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan Hines
John P. Dickerson
Chirag Shah
+
PDF
Chat
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
2024
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan Hines
John P. Dickerson
Chirag Shah
+
Counterfactual Explanations for Machine Learning: A Review.
2020
Sahil Verma
John P. Dickerson
Keegan Hines
+
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
2021
Raphael Mazzine
David Martens
+
PDF
Chat
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
2021
Raphael Oliveira
David Martens
+
PDF
Chat
Generating Counterfactual Explanations Using Cardinality Constraints
2024
Rubén Ruiz-Torrubiano
+
PDF
Chat
Robust Counterfactual Explanations in Machine Learning: A Survey
2024
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
+
PDF
Chat
Robust Counterfactual Explanations in Machine Learning: A Survey
2024
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
+
CARE: Coherent Actionable Recourse based on Sound Counterfactual Explanations
2021
Peyman Rasouli
Ingrid Chieh Yu
+
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
2021
Yu-Liang Chou
Catarina Moreira
Peter Bruza
Chun Ouyang
Joaquim Jorge
+
PDF
Chat
Efficient computation of contrastive explanations
2021
André Artelt
Barbara Hammer
+
Efficient computation of contrastive explanations
2020
André Artelt
Barbara Hammer
+
Efficient computation of contrastive explanations
2020
André Artelt
Barbara Hammer
+
MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation
2022
Wenzhuo Yang
Jia Li
Caiming Xiong
Steven C. H. Hoi
+
Multi-Objective Counterfactual Explanations
2020
Susanne Dandl
Christoph Molnar
Martin Binder
Bernd Bischl
+
PDF
Chat
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
2025
Keita Kinjo
+
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms
2021
Martin Pawelczyk
Sascha Bielawski
Johannes van den Heuvel
Tobias Richter
Gjergji Kasneci
+
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms
2021
Martin Pawelczyk
Sascha Bielawski
Johannes van den Heuvel
Tobias Richter
Gjergji Kasneci
+
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis
2021
Martin Pawelczyk
Chirag Agarwal
Shalmali Joshi
Sohini Upadhyay
Himabindu Lakkaraju
Works That Cite This (14)
Action
Title
Year
Authors
+
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects.
2020
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
+
PDF
Chat
Contrastive Explanations for Explaining Model Adaptations
2021
André Artelt
Fabian Hinder
Valerie Vaquet
Robert Feldhans
Barbara Hammer
+
Counterfactual Explanations for Machine Learning: A Review.
2020
Sahil Verma
John P. Dickerson
Keegan Hines
+
Counterfactual Explanations for Arbitrary Regression Models
2021
Thomas Spooner
Danial Dervovic
Jason Long
Jon M. Shepard
Jiahao Chen
Daniele Magazzeni
+
Efficient computation of contrastive explanations
2020
André Artelt
Barbara Hammer
+
Convex Density Constraints for Computing Plausible Counterfactual Explanations
2020
André Artelt
Barbara Hammer
+
Interpretable Deep Learning: Interpretations, Interpretability, Trustworthiness, and Beyond.
2021
Xuhong Li
Haoyi Xiong
Xingjian Li
Xuanyu Wu
Xiao Zhang
Ji Liu
Jiang Bian
Dejing Dou
+
PDF
Chat
Efficient computation of contrastive explanations
2021
André Artelt
Barbara Hammer
+
Seven challenges for harmonizing explainability requirements
2021
Jiahao Chen
Victor Storchan
+
Contrastive Explanations for Explaining Model Adaptations
2021
André Artelt
Fabian Hinder
Valerie Vaquet
Robert Feldhans
Barbara Hammer
Works Cited by This (14)
Action
Title
Year
Authors
+
PDF
Chat
Causal Interpretations of Black-Box Models
2019
Qingyuan Zhao
Trevor Hastie
+
Scikit-learn: Machine Learning in Python
2012
FabiĂĄn Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
+
Convex Optimization
2004
Stephen Boyd
Lieven Vandenberghe
+
General Heuristics for Nonconvex Quadratically Constrained Quadratic Programming
2017
Jaehyun Park
Stephen Boyd
+
A Survey of the Usages of Deep Learning in Natural Language Processing
2018
Daniel W. Otter
Julian Richard Medina
Jugal Kalita
+
Explaining Explanations: An Overview of Interpretability of Machine Learning
2018
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
+
PDF
Chat
Deep Learning for Audio Signal Processing
2019
H.âG. Purwins
Bo Li
Tuomas Virtanen
Jan SchlĂŒter
Shuo-Yiin Chang
Tara N. Sainath
+
PDF
Chat
Exploring Applications of Deep Reinforcement Learning for Real-world Autonomous Driving Systems
2019
Victor Talpaert
Ibrahim Sobh
Bangalore Ravi Kiran
Patrick Mannion
Senthil Yogamani
Ahmad El-Sallab
Patrick PĂ©rez
+
PDF
Chat
Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR
2017
Sandra Wachter
Brent Mittelstadt
Chris Russell
+
Efficient computation of counterfactual explanations of LVQ models
2019
André Artelt
Barbara Hammer