Rough solutions of the 3-D compressible Euler equations

Type: Preprint

Publication Date: 2019-11-12

Citations: 9

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Rough solutions of the 3-D compressible Euler equations 2019 Qian Wang
+ PDF Chat Rough solutions of the 3-D compressible Euler equations 2022 Qian Wang
+ Rough solutions of the 3-D compressible Euler equations 2019 Qian Wang
+ Well-posedness for rough solutions of the 3D compressible Euler equations 2022 Huali Zhang
Lars Andersson
+ Low regularity solutions of two-dimensional compressible Euler equations with dynamic vorticity 2020 Huali Zhang
+ On the rough solutions of 3D compressible Euler equations: an alternative proof 2021 Huali Zhang
Lars Andersson
+ Well-posedness of low regularity solutions for the 3D relativistic Euler equations 2024 Huali Zhang
+ PDF Chat Local well-posedness for the motion of a compressible gravity water wave with vorticity 2022 Chenyun Luo
Junyan Zhang
+ Rough Solutions of the Relativistic Euler Equations 2022 Sifan Yu
+ Rough solutions of the relativistic Euler equations 2024 S. YU
+ PDF Chat Local Well-Posedness and Incompressible Limit of the Free-Boundary Problem in Compressible Elastodynamics 2022 Junyan Zhang
+ On the 2D compressible Euler equations: low regularity solutions $\textrm{II}$ 2020 Huali Zhang
+ PDF Chat Physical Vacuum Problems for the Full Compressible Euler Equations: Hadamard-style Local Well-posedness 2024 Sicheng Liu
Tao Luo
+ Global unique solution for the 3-D full compressible MHD equations in space of lower regularity 2022 Chuanbao Wang
Fei Chen
Shuai Wang
+ Well-posedness of the Euler equation in Triebel–Lizorkin–Morrey spaces 2018 Dongxiang Chen
Xiaoli Chen
Lijing Sun
+ PDF Chat Local Existence for the 2D Euler Equations in a Critical Sobolev Space 2024 Elaine Cozzi
Nicholas Harrison
+ Compressible Gravity-Capillary Water Waves with Vorticity: Local Well-Posedness, Incompressible and Zero-Surface-Tension Limits 2022 Chenyun Luo
Junyan Zhang
+ On the Geometric Regularity Conditions for the 3D Navier-Stokes Equations 2016 Dongho Chae
Jihoon Lee
+ On the critical one-component velocity regularity criteria to 3-D incompressible MHD system 2015 Yanlin Liu
+ PDF Chat On the geometric regularity conditions for the 3D Navier–Stokes equations 2016 Dongho Chae
Jihoon Lee