Report on 1907.02421v1

Type: Peer-Review

Publication Date: 2019-08-05

Citations: 0

DOI: https://doi.org/10.21468/scipost.report.1097

Download PDF

Abstract

In this work we study Wigner localization at very low densities by means of the exact diagonalization of the Hamiltonian.This yields numerically exact results.In particular, we study a quasi-one-dimensional system of two electrons confined to a ring.To characterize the Wigner localization we study several appropriate observables, namely the two-body reduced density matrix, the localization tensor and the particle-hole entropy.We show that the localization tensor is the most promising quantity to study Wigner localization since it accurately captures the transition from the delocalized to the localized state and it can be applied to systems of all sizes.

Locations

  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Report on 1907.02421v1 2019 Miguel Escobar Azor
LĂ©a Brooke
Stefano Evangelisti
Thierry Leininger
Pierre‐François Loos
Nicolas Suaud
J. A. Berger
Ophir M. Auslaender
Hadar Steinberg
Amir Yacoby
+ PDF Chat Report on 1907.02421v1 2019 Miguel Escobar Azor
LĂ©a Brooke
Stefano Evangelisti
Thierry Leininger
Pierre‐François Loos
Nicolas Suaud
J. A. Berger
Ophir M. Auslaender
Hadar Steinberg
Amir Yacoby
+ PDF Chat Report on 1907.02421v2 2019 Miguel Escobar Azor
LĂ©a Brooke
Stefano Evangelisti
Thierry Leininger
Pierre‐François Loos
Nicolas Suaud
J. A. Berger
+ PDF Chat Report on 1907.02421v2 2019 Miguel Escobar Azor
LĂ©a Brooke
Stefano Evangelisti
Thierry Leininger
Pierre‐François Loos
Nicolas Suaud
J. A. Berger
+ Wigner localization at extremely low densities: a numerically exact \emph{ab initio} study 2019 Miguel Escobar Azor
LĂ©a Brooke
Stefano Evangelisti
Thierry Leininger
Pierre‐François Loos
Nicolas Suaud
J. A. Berger
+ PDF Chat A Wigner molecule at extremely low densities: a numerically exact study 2019 Miguel Escobar Azor
LĂ©a Brooke
Stefano Evangelisti
Thierry Leininger
Pierre‐François Loos
Nicolas Suaud
J. A. Berger
+ PDF Chat The Wigner localization of interacting electrons in a one-dimensional harmonic potential 2022 Xabier Telleria‐Allika
Miguel Escobar Azor
Grégoire François
Gian Luigi Bendazzoli
Jon M. Matxain
Xabier LĂłpez
Stefano Evangelisti
J. A. Berger
+ The Wigner localization of interacting electrons in a one-dimensional harmonic potential 2022 Xabier Telleria‐Allika
Miguel Escobar Azor
Grégoire François
Gian Luigi Bendazzoli
Jon M. Matxain
Xabier LĂłpez
Stefano Evangelisti
J. A. Berger
+ Persistent current and Wigner crystallization in a one dimensional quantum ring 2007 Marc Siegmund
Markus Hofmann
Oleg Pankratov
+ Localization for random Schrödinger operators with low density potentials 2012 Francisco Hoecker-Escuti
+ PDF Chat Report on 1712.06892v2 2018 Wouter Buijsman
Vladimir Gritsev
Vadim Cheianov
+ PDF Chat Many-body localization in large systems: Matrix-product-state approach 2021 Elmer V. H. Doggen
I. V. Gornyi
A. D. Mirlin
D. G. Polyakov
+ PDF Chat Report on 1902.00357v2 2019 Piotr Sierant
Krzysztof BiedroƄ
Giovanna Morigi
Jakub Zakrzewski
+ PDF Chat Report on 1902.00357v2 2019 Piotr Sierant
Krzysztof BiedroƄ
Giovanna Morigi
Jakub Zakrzewski
+ PDF Chat Report on 1902.00357v2 2019 Piotr Sierant
Krzysztof BiedroƄ
Giovanna Morigi
Jakub Zakrzewski
+ PDF Chat Report on 1607.01285v3 2016 Piero Naldesi
Elisa Ercolessi
Tommaso Roscilde
+ PDF Chat Report on 2001.06493v1 2020 Alexander Burin
+ PDF Chat Report on 2001.06493v1 2020 Anton Kutlin
Ivan M. Khaymovich
+ Non-Hermitian Lindhard function and Friedel oscillations 2021 BalĂĄzs DĂłra
Doru Sticlet
Cătălin PaƟcu Moca
+ PDF Chat Report on 2005.10233v2 2020 Francesca Pietracaprina
Fabien Alet

Works That Cite This (0)

Action Title Year Authors