Plemelj–Sokhotski isomorphism for quasicircles in Riemann surfaces and the Schiffer operators

Type: Article

Publication Date: 2019-10-31

Citations: 8

DOI: https://doi.org/10.1007/s00208-019-01922-4

Abstract

Abstract Let R be a compact Riemann surface and $$\Gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Γ</mml:mi> </mml:math> be a Jordan curve separating R into connected components $$\Sigma _1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> and $$\Sigma _2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:math> . We consider Calderón–Zygmund type operators $$T(\Sigma _1,\Sigma _k)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> taking the space of $$L^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> anti-holomorphic one-forms on $$\Sigma _1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> to the space of $$L^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> holomorphic one-forms on $$\Sigma _k$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:math> for $$k=1,2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , which we call the Schiffer operators. We extend results of Max Schiffer and others, which were confined to analytic Jordan curves $$\Gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Γ</mml:mi> </mml:math> , to general quasicircles, and prove new identities for adjoints of the Schiffer operators. Furthermore, let V be the space of anti-holomorphic one-forms which are orthogonal to $$L^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> anti-holomorphic one-forms on R with respect to the inner product on $$\Sigma _1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> . We show that the restriction of the Schiffer operator $$T(\Sigma _1,\Sigma _2)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> to V is an isomorphism onto the set of exact holomorphic one-forms on $$\Sigma _2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:math> . Using the relation between this Schiffer operator and a Cauchy-type integral involving Green’s function, we also derive a jump decomposition (on arbitrary Riemann surfaces) for quasicircles and initial data which are boundary values of Dirichlet-bounded harmonic functions and satisfy the classical algebraic constraints. In particular we show that the jump operator is an isomorphism on the subspace determined by these constraints.

Locations

  • Mathematische Annalen - View - PDF

Similar Works

Action Title Year Authors
+ Koenigs functions, quasicircles and BMO 1995 Juha Heinonen
Steffen Rohde
+ Riemann Geometries 2013 Saul Stahl
Catherine Stenson
+ Bloch Functions and Quasicircles 2005 John B. Garnett
Donald E. Marshall
+ On Laguerre Isopararmetric Hypersurfaces in R^7 2014 Ji
Xiu Xiu
Hu
Chuan-feng
+ Sperner-Homöomorphismen auf Ebene, Zylinder und Möbiusband 1975 Dieter Betten
+ None 1994 Peter Buser
J. Conway
Peter G. Doyle
Klaus‐Dieter Semmler
+ Cylindrical real hyper surfaces in $\mathbf{C}^{n}$ 1981 Claudio Rea
+ Pencils of Hypersurfaces 1931 T. R. Hollcroft
+ Spherical complexes and radial projections of polytopes 1971 G. C. Shephard
+ Integration on hypercircles in r n 2009 Grzegorz Biernat
Magdalena Ligus
Jarosław Siedlecki
+ <i>Current algebras on Riemann surfaces: new results and applications</i>(de Gruyter Expositions in Mathematics 58)<i>By</i>Oleg K. Sheinman 2015 Alexander A. Gaifullin
+ PDF Chat Faserungen und Homotopie in Kategorien 1971 Claus Michael Ringel
+ Robert D.M.Accola:Topics in the Theory of Riemann Surfaces (書評) 1997 秀幸 木村
+ The Gauss Map of Surfaces in R<sup>3</sup> and R<sup>4</sup> 1985 David Hoffman
Robert Osserman
+ Curves on a Kummer Surface in ℙ<sup>3</sup>, I 1994 M. R. Gonzalez‐Dorrego
+ Szegö and Bergman projections on non-smooth planar domains 2004 Loredana Lanzani
Elias M. Stein
+ Laguerre Geometry of Surfaces in R 3 2005 Tong Zhu Li
+ Systoles of arithmetic surfaces and the Markoff spectrum 1996 Paul Schmutz
+ Systoles of arithmetic surfaces and the Markoff spectrum 1996 Paul Sclunutz
+ PDF Chat On Laguerre's plane geometry 1984 Zdeněk Jankovský