Type: Article
Publication Date: 2019-10-31
Citations: 8
DOI: https://doi.org/10.1007/s00208-019-01922-4
Abstract Let R be a compact Riemann surface and $$\Gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Γ</mml:mi> </mml:math> be a Jordan curve separating R into connected components $$\Sigma _1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> and $$\Sigma _2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:math> . We consider Calderón–Zygmund type operators $$T(\Sigma _1,\Sigma _k)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> taking the space of $$L^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> anti-holomorphic one-forms on $$\Sigma _1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> to the space of $$L^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> holomorphic one-forms on $$\Sigma _k$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:math> for $$k=1,2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , which we call the Schiffer operators. We extend results of Max Schiffer and others, which were confined to analytic Jordan curves $$\Gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Γ</mml:mi> </mml:math> , to general quasicircles, and prove new identities for adjoints of the Schiffer operators. Furthermore, let V be the space of anti-holomorphic one-forms which are orthogonal to $$L^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> anti-holomorphic one-forms on R with respect to the inner product on $$\Sigma _1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> . We show that the restriction of the Schiffer operator $$T(\Sigma _1,\Sigma _2)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> to V is an isomorphism onto the set of exact holomorphic one-forms on $$\Sigma _2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:math> . Using the relation between this Schiffer operator and a Cauchy-type integral involving Green’s function, we also derive a jump decomposition (on arbitrary Riemann surfaces) for quasicircles and initial data which are boundary values of Dirichlet-bounded harmonic functions and satisfy the classical algebraic constraints. In particular we show that the jump operator is an isomorphism on the subspace determined by these constraints.