Type: Article
Publication Date: 2019-09-01
Citations: 10
DOI: https://doi.org/10.1093/imrn/rnz248
Abstract Consider a one-parameter family of smooth, irreducible, projective curves of genus $g\ge 2$ defined over a number field. Each fiber contains at most finitely many rational points by the Mordell conjecture, a theorem of Faltings. We show that the number of rational points is bounded only in terms of the family and the Mordell–Weil rank of the fiber’s Jacobian. Our proof uses Vojta’s approach to the Mordell Conjecture furnished with a height inequality due to the 2nd- and 3rd-named authors. In addition we obtain uniform bounds for the number of torsion points in the Jacobian that lie in each fiber of the family.