Enhancing Self-Supervised Monocular Depth Estimation with Traditional Visual Odometry

Type: Article

Publication Date: 2019-09-01

Citations: 43

DOI: https://doi.org/10.1109/3dv.2019.00054

Abstract

Estimating depth from a single image represents an attractive alternative to more traditional approaches leveraging multiple cameras. In this field, deep learning yielded outstanding results at the cost of needing large amounts of data labeled with precise depth measurements for training. An issue softened by self-supervised approaches leveraging monocular sequences or stereo pairs in place of expensive ground truth depth annotations. This paper enables to further improve monocular depth estimation by integrating into existing self-supervised networks a geometrical prior. Specifically, we propose a sparsity-invariant autoencoder able to process the output of conventional visual odometry algorithms working in synergy with depth-from-mono networks. Experimental results on the KITTI dataset show that by exploiting the geometrical prior, our proposal: i) outperforms existing approaches in the literature and ii) couples well with both compact and complex depth-from-mono architectures, allowing for its deployment on high-end GPUs as well as on embedded devices (e.g., NVIDIA Jetson TX2).

Locations

  • arXiv (Cornell University) - View - PDF
  • 2021 International Conference on 3D Vision (3DV) - View

Similar Works

Action Title Year Authors
+ Enhancing self-supervised monocular depth estimation with traditional visual odometry 2019 Lorenzo Andraghetti
Panteleimon Myriokefalitakis
Pier Luigi Dovesi
Belen Luque
Matteo Poggi
Alessandro Pieropan
Stefano Mattoccia
+ Enhancing self-supervised monocular depth estimation with traditional visual odometry 2019 Lorenzo Andraghetti
Panteleimon Myriokefalitakis
Pier Luigi Dovesi
Belén Luque
Matteo Poggi
Alessandro Pieropan
Stefano Mattoccia
+ Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry 2018 Nan Yang
Rui Wang
Jörg Stückler
Daniel Cremers
+ PDF Chat Self-supervised Pretraining and Finetuning for Monocular Depth and Visual Odometry 2024 Boris Chidlovskii
Leonid Antsfeld
+ Self-Supervised Learning based Depth Estimation from Monocular Images 2023 Mayank Poddar
Akash Mishra
Mohit Kewlani
Haoyang Pei
+ Monocular Depth Estimation with Self-supervised Instance Adaptation 2020 Robert McCraith
Lukáš Neumann
Andrew Zisserman
Andrea Vedaldi
+ PDF Chat MonoViT: Self-Supervised Monocular Depth Estimation with a Vision Transformer 2022 Chaoqiang Zhao
Youmin Zhang
Matteo Poggi
Fabio Tosi
Xianda Guo
Zheng Zhu
Guan Huang
Yang Tang
Stefano Mattoccia
+ MonoViT: Self-Supervised Monocular Depth Estimation with a Vision Transformer 2022 Chaoqiang Zhao
Youmin Zhang
Matteo Poggi
Fabio Tosi
Xianda Guo
Zheng Zhu
Guan Huang
Yang Tang
Stefano Mattoccia
+ Scale-aware direct monocular odometry 2021 Carlos Eduardo Maduro de Campos
Juan D. Tardós
+ PDF Chat Scale-aware direct monocular odometry 2022 Carlos Campos
Juan D. Tardós
+ Learning monocular depth estimation with unsupervised trinocular assumptions 2018 Matteo Poggi
Fabio Tosi
Stefano Mattoccia
+ Learning monocular depth estimation with unsupervised trinocular assumptions 2018 Matteo Poggi
Fabio Tosi
Stefano Mattoccia
+ PDF Chat Learning Monocular Depth Estimation with Unsupervised Trinocular Assumptions 2018 Matteo Poggi
Fabio Tosi
Stefano Mattoccia
+ Self-supervised Monocular Trained Depth Estimation using Self-attention and Discrete Disparity Volume 2020 Adrian Johnston
Gustavo Carneiro
+ PDF Chat Self-Supervised Monocular Trained Depth Estimation Using Self-Attention and Discrete Disparity Volume 2020 Adrian Johnston
Gustavo Carneiro
+ FIS-Nets: Full-image Supervised Networks for Monocular Depth Estimation 2020 Bei Wang
Jianping An
+ SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation 2018 Sudeep Pillai
Rareș Ambruș
Adrien Gaidon
+ A Large RGB-D Dataset for Semi-supervised Monocular Depth Estimation 2019 Jae Hoon Cho
Dongbo Min
Youngjung Kim
Kwanghoon Sohn
+ Learning Depth from Monocular Videos using Direct Methods 2017 Chaoyang Wang
José M. Buenaposada
Rui Zhu
Simon Lucey
+ PDF Chat Learning Depth from Monocular Videos Using Direct Methods 2018 Chaoyang Wang
José M. Buenaposada
Rui Zhu
Simon Lucey

Works That Cite This (19)

Action Title Year Authors
+ PDF Chat Pseudo RGB-D for Self-improving Monocular SLAM and Depth Prediction 2020 Lokender Tiwari
Pan Ji
Quoc-Huy Tran
Bingbing Zhuang
Saket Anand
Manmohan Chandraker
+ Accurate and Robust Scale Recovery for Monocular Visual Odometry Based on Plane Geometry 2021 Rui Tian
Yunzhou Zhang
Delong Zhu
Shiwen Liang
Sonya Coleman
Dermot Kerr
+ Consistent Video Depth Estimation 2020 Xuan Luo
Jia‐Bin Huang
Richard Szeliski
Kevin Matzen
Johannes Kopf
+ PDF Chat On the Uncertainty of Self-Supervised Monocular Depth Estimation 2020 Matteo Poggi
Filippo Aleotti
Fabio Tosi
Stefano Mattoccia
+ Autonomous Driving with Deep Learning: A Survey of State-of-Art Technologies 2020 Yu Huang
Yue Chen
+ PDF Chat On deep learning techniques to boost monocular depth estimation for autonomous navigation 2020 Raul de Queiroz Mendes
Eduardo G. Ribeiro
Nícolas dos Santos Rosa
Valdir Grassi
+ Pseudo RGB-D for Self-Improving Monocular SLAM and Depth Prediction 2020 Lokender Tiwari
Pan Ji
Quoc-Huy Tran
Bingbing Zhuang
Saket Anand
Manmohan Chandraker
+ PDF Chat Towards Scale Consistent Monocular Visual Odometry by Learning from the Virtual World 2022 Sen Zhang
Jing Zhang
Dacheng Tao
+ PDF Chat On the Synergies between Machine Learning and Binocular Stereo for Depth Estimation from Images: a Survey 2021 Matteo Poggi
Fabio Tosi
Konstantinos Batsos
Philippos Mordohai
Stefano Mattoccia
+ PDF Chat Feature-Metric Loss for Self-supervised Learning of Depth and Egomotion 2020 Chang Shu
Kun Yu
Zhixiang Duan
Kuiyuan Yang