On a Higher Dimensional Version of the Benjamin--Ono Equation

Type: Article

Publication Date: 2019-01-01

Citations: 22

DOI: https://doi.org/10.1137/19m1241970

Abstract

We consider a higher dimensional version of the Benjamin--Ono equation, $\partial_t u -\mathcal{R}_1\Delta u+u\partial_{x_1} u=0$, where $\mathcal{R}_1$ denotes the Riesz transform with respect to the first coordinate. We first establish sharp space-time estimates for the associated linear equation. These estimates enable us to show that the initial value problem for the nonlinear equation is locally well-posed in $L^2$-Sobolev spaces $H^{s}(\mathbb{R}^d)$, with $s>5/3$ if $d=2$ and $s>d/2+1/2$ if $d\ge 3$. We also provide ill-posedness results.

Locations

  • arXiv (Cornell University) - View - PDF
  • Edinburgh Research Explorer (University of Edinburgh) - View - PDF
  • DIGITAL.CSIC (Spanish National Research Council (CSIC)) - View - PDF
  • SIAM Journal on Mathematical Analysis - View

Similar Works

Action Title Year Authors
+ On a higher dimensional version of the Benjamin--Ono equation 2019 Felipe Linares
Oscar RiaƱo
Keith M. Rogers
James Wright
Jonathan E. Hickman
+ On a higher dimensional version of the Benjamin--Ono equation. 2019 Felipe Linares
Oscar RiaƱo
Keith M. Rogers
James Wright
Jonathan Hickman
+ On the $L^2$ well-posedness and decay estimate of third order Benjamin-Ono equation 2022 Lizhe Wan
+ PDF Chat On well-posedness for the Benjaminā€“Ono equation 2007 Nicolas Burq
Fabrice Planchon
+ Global well-posedness of the Benjamin-Ono equation in low-regularity spaces 2005 Alexandru D. Ionescu
Carlos E. Kenig
+ PDF Chat On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations 2003 Carlos E. Kenig
Kenneth D. Koenig
+ PDF Chat Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation 2019 Mihaela Ifrim
Daniel Tataru
+ PDF Chat Global well-posedness in L^2 for the periodic Benjamin-Ono equation 2008 Luc Molinet
+ Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation 2017 Mihaela Ifrim
Daniel Tataru
+ Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation 2017 Mihaela Ifrim
Daniel Tataru
+ PDF Chat Global well-posedness in L 2 for the periodic Benjamin-Ono equation 2008 Luc Molinet
+ Sharp ill-posedness result for the periodic Benjamin-Ono equation 2008 Luc Molinet
+ PDF Chat On the Generalized Benjamin-Ono Equation 1994 Carlos E. Kenig
Gustavo Ponce
Luis Vega
+ PDF Chat Sharp ill-posedness result for the periodic Benjamin-Ono equation 2009 Luc Molinet
+ The IVP for a higher dimensional version of the Benjamin-Ono equation in weighted Sobolev spaces 2019 Oscar RiaƱo
+ The IVP for a higher dimensional version of the Benjamin-Ono equation in weighted Sobolev spaces 2020 Oscar RiaƱo
+ The IVP for a higher dimensional version of the Benjamin-Ono equation in weighted Sobolev spaces 2019 Oscar RiaƱo
+ PDF Chat Long time behavior of solutions for a damped Benjaminā€“Ono equation 2021 Louise Gassot
+ The Cauchy problem for a bidimensional generalization of the Benjamin-Ono equation in Sobolev spaces of low regularity 2017 Eddye Bustamante
JosƩ JimƩnez Urrea
Jorge MejĆ­a
+ Global well-posedness of the Benjaminā€“Ono equation in low-regularity spaces 2006 Alexandru D. Ionescu
Carlos E. Kenig