ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks

Type: Article

Publication Date: 2019-10-01

Citations: 598

DOI: https://doi.org/10.1109/iccv.2019.00200

Abstract

As designing appropriate Convolutional Neural Network (CNN) architecture in the context of a given application usually involves heavy human works or numerous GPU hours, the research community is soliciting the architecture-neutral CNN structures, which can be easily plugged into multiple mature architectures to improve the performance on our real-world applications. We propose Asymmetric Convolution Block (ACB), an architecture-neutral structure as a CNN building block, which uses 1D asymmetric convolutions to strengthen the square convolution kernels. For an off-the-shelf architecture, we replace the standard square-kernel convolutional layers with ACBs to construct an Asymmetric Convolutional Network (ACNet), which can be trained to reach a higher level of accuracy. After training, we equivalently convert the ACNet into the same original architecture, thus requiring no extra computations anymore. We have observed that ACNet can improve the performance of various models on CIFAR and ImageNet by a clear margin. Through further experiments, we attribute the effectiveness of ACB to its capability of enhancing the model's robustness to rotational distortions and strengthening the central skeleton parts of square convolution kernels.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2021 IEEE/CVF International Conference on Computer Vision (ICCV) - View

Similar Works

Action Title Year Authors
+ ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks 2019 Xiaohan Ding
Yuchen Guo
Guiguang Ding
Jungong Han
+ Shift-ConvNets: Small Convolutional Kernel with Large Kernel Effects 2024 Dachong Li
Li Li
Zhuangzhuang Chen
Jianqiang Li
+ Diverse Branch Block: Building a Convolution as an Inception-like Unit 2021 Xiaohan Ding
Xiangyu Zhang
Jungong Han
Guiguang Ding
+ Integrating Large Circular Kernels into CNNs through Neural Architecture Search 2021 Kun He
Chao Li
Yixiao Yang
Gao Huang
John E. Hopcroft
+ PDF Chat An Adaptive Orthogonal Convolution Scheme for Efficient and Flexible CNN Architectures 2025 Thibaut Boissin
Franck Mamalet
Thomas Fel
Agustin Martin Picard
Thomas Masséna
Mathieu Serrurier
+ PDF Chat Scaling Up Your Kernels: Large Kernel Design in ConvNets towards Universal Representations 2024 Yiyuan Zhang
Xiaohan Ding
Xiangyu Yue
+ PDF Chat Depthwise Multiception Convolution for Reducing Network Parameters without Sacrificing Accuracy 2020 Guoqing Bao
Manuel B. Graeber
Xiuying Wang
+ ParCNetV2: Oversized Kernel with Enhanced Attention 2022 Rui‐Hua Xu
Haokui Zhang
Wenze Hu
Shiliang Zhang
Xiaoyu Wang
+ PDF Chat A Comprehensive Survey of Convolutions in Deep Learning: Applications, Challenges, and Future Trends 2024 Abolfazl Younesi
Mohsen Ansari
MohammadAmin Fazli
Alireza Ejlali
Muhammad Shafique
Jörg Henkel
+ Comb Convolution for Efficient Convolutional Architecture 2019 Dandan Li
Yuan Zhou
Shuwei Huo
Sun‐Yuan Kung
+ HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs 2019 Pravendra Singh
Vinay Kumar Verma
Piyush Rai
Vinay P. Namboodiri
+ HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs 2019 Pravendra Singh
Vinay Kumar Verma
Piyush Rai
Vinay P. Namboodiri
+ Active Convolution: Learning the Shape of Convolution for Image Classification 2017 Yunho Jeon
Junmo Kim
+ PDF Chat An Alternative Practice of Tropical Convolution to Traditional Convolutional Neural Networks 2021 Shiqing Fan
Liying Liu
Ye Luo
+ An Alternative Practice of Tropical Convolution to Traditional Convolutional Neural Networks 2021 Shiqing Fan
Liying Liu
Ye Luo
+ PDF Chat Active Convolution: Learning the Shape of Convolution for Image Classification 2017 Yunho Jeon
Junmo Kim
+ Drastically Reducing the Number of Trainable Parameters in Deep CNNs by Inter-layer Kernel-sharing 2022 Alireza Azadbakht
Saeed Reza Kheradpisheh
Ismail Khalfaoui-Hassani
Timothée Masquelier
+ Convolutional Networks with Oriented 1D Kernels 2023 Alexandre Kirchmeyer
Jia Deng
+ PDF Chat Convolutional Networks with Oriented 1D Kernels 2023 Alexandre Kirchmeyer
Jia Deng
+ PDF Chat HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs 2019 Pravendra Singh
Vinay Kumar Verma
Piyush Rai
Vinay P. Namboodiri

Works That Cite This (100)

Action Title Year Authors
+ PDF Chat DDistill-SR: Reparameterized Dynamic Distillation Network for Lightweight Image Super-Resolution 2022 Yan Wang
Tongtong Su
Yusen Li
Jiuwen Cao
Gang Wang
Xiaoguang Liu
+ PDF Chat GaitStrip: Gait Recognition via Effective Strip-Based Feature Representations and Multi-level Framework 2023 Ming Wang
Beibei Lin
Xianda Guo
Lincheng Li
Zheng Zhu
Jiande Sun
Shunli Zhang
Yu Liu
Xin Yu
+ PDF Chat HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation 2022 Lukas Hoyer
Dengxin Dai
Luc Van Gool
+ PDF Chat Learning a Single Convolutional Layer Model for Low Light Image Enhancement 2023 Yuantong Zhang
Baoxin Teng
Daiqin Yang
Zhenzhong Chen
Haichuan Ma
Gang Li
Wenpeng Ding
+ PDF Chat TT-SNN: Tensor Train Decomposition for Efficient Spiking Neural Network Training 2024 Dong‐Hyun Lee
Ruokai Yin
Youngeun Kim
Abhishek Moitra
Yuhang Li
Priyadarshini Panda
+ PDF Chat Dynamic Domain Generalization 2022 Zhishu Sun
Z. Shen
Luojun Lin
Yuanlong Yu
Zhifeng Yang
Shicai Yang
Weijie Chen
+ PDF Chat MotionTrack: Learning Robust Short-Term and Long-Term Motions for Multi-Object Tracking 2023 Zheng Qin
Sanping Zhou
Le Wang
Jinghai Duan
Gang Hua
Wei Tang
+ RepVGG: Making VGG-style ConvNets Great Again 2021 Xiaohan Ding
Xiangyu Zhang
Ningning Ma
Jungong Han
Guiguang Ding
Jian Sun
+ PDF Chat ClipSAM: CLIP and SAM collaboration for zero-shot anomaly segmentation 2024 Shengze Li
Jianjian Cao
Peng Ye
Yuhan Ding
Chongjun Tu
Tao Chen
+ RSAdapter: Adapting Multimodal Models for Remote Sensing Visual Question Answering 2023 Yuduo Wang
Pedram Ghamisi