Regularization Matters in Policy Optimization

Type: Preprint

Publication Date: 2019-01-01

Citations: 19

DOI: https://doi.org/10.48550/arxiv.1910.09191

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Regularization Matters in Policy Optimization -- An Empirical Study on Continuous Control 2019 Zhuang Liu
Xuanlin Li
Bingyi Kang
Trevor Darrell
+ Control Regularization for Reduced Variance Reinforcement Learning 2019 Richard Cheng
Abhinav Verma
Gábor Orosz
Swarat Chaudhuri
Yisong Yue
Joel W. Burdick
+ The Definitive Guide to Policy Gradients in Deep Reinforcement Learning: Theory, Algorithms and Implementations 2024 Matthias Lehmann
+ Entropy Regularized Reinforcement Learning with Cascading Networks 2022 Riccardo Della Vecchia
Alena Shilova
Pierre‐Marie Preux
Riad Akrour
+ PDF Chat Learning Value Functions in Deep Policy Gradients using Residual Variance 2021 Yannis Flet-Berliac
Reda Ouhamma
Odalric-Ambrym Maillard
Pierre‐Marie Preux
+ Learning Value Functions in Deep Policy Gradients using Residual Variance 2020 Yannis Flet-Berliac
Reda Ouhamma
Odalric-Ambrym Maillard
Pierre‐Marie Preux
+ Robust Policy Optimization in Deep Reinforcement Learning 2022 Md. Masudur Rahman
Yexiang Xue
+ Sample Dropout: A Simple yet Effective Variance Reduction Technique in Deep Policy Optimization 2023 Zichuan Lin
Xiapeng Wu
Mingfei Sun
Deheng Ye
Qiang Fu
Wei Yang
Wei Liu
+ Where Did My Optimum Go?: An Empirical Analysis of Gradient Descent Optimization in Policy Gradient Methods 2018 Peter Henderson
Joshua Romoff
Joëlle Pineau
+ PDF Chat Policy Mirror Descent for Regularized Reinforcement Learning: A Generalized Framework with Linear Convergence 2023 Wenhao Zhan
Shicong Cen
Baihe Huang
Yuxin Chen
Jason D. Lee
Yuejie Chi
+ Learning to Optimize for Reinforcement Learning 2023 Qingfeng Lan
A. Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
+ How to Make Deep RL Work in Practice 2020 Nirnai Rao
Elie Aljalbout
Axel Sauer
Sami Haddadin
+ Revisiting Estimation Bias in Policy Gradients for Deep Reinforcement Learning 2023 Haoxuan Pan
Deheng Ye
Xiaoming Duan
Qiang Fu
Wei Yang
Jianping He
Mingfei Sun
+ NADPEx: An on-policy temporally consistent exploration method for deep reinforcement learning 2018 Sirui Xie
Junning Huang
Lanxin Lei
Chunxiao Liu
Zheng Ma
Wei Zhang
Liang Lin
+ NADPEx: An on-policy temporally consistent exploration method for deep reinforcement learning 2018 Sirui Xie
Junning Huang
Lanxin Lei
Chunxiao Liu
Zheng Ma
Wei Zhang
Liang Lin
+ PDF Chat Improving Deep Reinforcement Learning by Reducing the Chain Effect of Value and Policy Churn 2024 Hongyao Tang
Glen Berseth
+ Cautious Policy Programming: Exploiting KL Regularization in Monotonic Policy Improvement for Reinforcement Learning 2021 Lingwei Zhu
Toshinori Kitamura
Takamitsu Matsubara
+ PDF Chat Overestimation, Overfitting, and Plasticity in Actor-Critic: the Bitter Lesson of Reinforcement Learning 2024 Michal Nauman
Michał Bortkiewicz
Mateusz Ostaszewski
Piotr Miłoś
T. P. Trzcinski
Marek Cygan
+ On Multi-objective Policy Optimization as a Tool for Reinforcement Learning. 2021 Abbas Abdolmaleki
Sandy H. Huang
Giulia Vezzani
Bobak Shahriari
Jost Tobias Springenberg
Shruti Mishra
Dhruva Tb
Arunkumar Byravan
Konstantinos Bousmalis
András György
+ Handling Cost and Constraints with Off-Policy Deep Reinforcement Learning 2023 J. Markowitz
Jesse L. Silverberg
Gary S. Collins

Works Cited by This (33)

Action Title Year Authors
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning 2016 Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
+ PDF Chat Domain randomization for transferring deep neural networks from simulation to the real world 2017 Josh Tobin
Rachel Fong
Alex Ray
Jonas Schneider
Wojciech Zaremba
Pieter Abbeel
+ A unified view of entropy-regularized Markov decision processes 2017 Gergely Neu
Anders Jönsson
Vicenç Gómez
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
+ Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments 2017 Maruan Al-Shedivat
Trapit Bansal
Yuri Burda
Ilya Sutskever
Igor Mordatch
Pieter Abbeel
+ IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures 2018 Lasse Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymir Mnih
Tom Ward
Yotam Doron
Vlad Firoiu
Tim Harley
Iain Dunning
+ Addressing Function Approximation Error in Actor-Critic Methods 2018 Scott Fujimoto
Herke van Hoof
David Meger
+ Meta-Reinforcement Learning of Structured Exploration Strategies 2018 Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine