A note on singular integrals with angular integrability

Type: Article

Publication Date: 2019-10-16

Citations: 1

DOI: https://doi.org/10.1186/s13660-019-2214-4

Abstract

Abstract In this note we study the rough singular integral $$ T_{\varOmega }f(x)=\mathrm{p.v.} \int _{\mathbb{R}^{n}}f(x-y)\frac{\varOmega (y/ \vert y \vert )}{ \vert y \vert ^{n}}\,dy, $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>Ω</mml:mi> </mml:msub> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>.</mml:mo> <mml:mi>v</mml:mi> <mml:mo>.</mml:mo> </mml:mrow> <mml:msub> <mml:mo>∫</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:msub> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>−</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mi>y</mml:mi> <mml:mo>/</mml:mo> <mml:mo>|</mml:mo> <mml:mi>y</mml:mi> <mml:mo>|</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>y</mml:mi> <mml:msup> <mml:mo>|</mml:mo> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mspace /> <mml:mi>d</mml:mi> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> </mml:math> where $n\geq 2$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:math> and Ω is a function in $L\log L(\mathrm{S} ^{n-1})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>L</mml:mi> <mml:mo>log</mml:mo> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:math> with vanishing integral. We prove that $T_{\varOmega }$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>Ω</mml:mi> </mml:msub> </mml:math> is bounded on the mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}( \mathbb{R}^{n})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>θ</mml:mi> <mml:mover> <mml:mi>p</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> </mml:msubsup> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:math> , on the vector-valued mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}(\mathbb{R}^{n},\ell ^{\tilde{p}})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>θ</mml:mi> <mml:mover> <mml:mi>p</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> </mml:msubsup> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>ℓ</mml:mi> <mml:mover> <mml:mi>p</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> </mml:msup> <mml:mo>)</mml:mo> </mml:math> and on the vector-valued function spaces $L^{p}(\mathbb{R}^{n}, \ell ^{\tilde{p}})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>ℓ</mml:mi> <mml:mover> <mml:mi>p</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> </mml:msup> <mml:mo>)</mml:mo> </mml:math> if $1&lt;\tilde{p}\leq p&lt;\tilde{p}n/(n-1)$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mn>1</mml:mn> <mml:mo>&lt;</mml:mo> <mml:mover> <mml:mi>p</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&lt;</mml:mo> <mml:mover> <mml:mi>p</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> <mml:mi>n</mml:mi> <mml:mo>/</mml:mo> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:math> or $\tilde{p}n/(\tilde{p}+n-1)&lt; p\leq \tilde{p}&lt;\infty $ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mover> <mml:mi>p</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> <mml:mi>n</mml:mi> <mml:mo>/</mml:mo> <mml:mo>(</mml:mo> <mml:mover> <mml:mi>p</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> <mml:mo>+</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>&lt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤</mml:mo> <mml:mover> <mml:mi>p</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> <mml:mo>&lt;</mml:mo> <mml:mi>∞</mml:mi> </mml:math> . The same conclusions hold for the well-known Riesz transforms and directional Hilbert transforms. It should be pointed out that our proof is based on the Calderón–Zygmund’s rotation method.

Locations

  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • Journal of Inequalities and Applications - View - PDF

Similar Works

Action Title Year Authors
+ Rough singular integrals and maximal operator with radial-angular integrability 2021 Ronghui Liu
Huoxiong Wu
+ A note on singular integral 2023 Arup Kumar Maity
Shyam Swarup Mondal
+ PDF Chat A remark on singular integrals with complex homogeneity 1992 R. W. L. Jones
+ Weighted estimates for rough singular integrals with applications to angular integrability 2019 Feng Liu
Dashan Fan
+ 𝐿^{𝑝} bounds for the commutators of singular integrals and maximal singular integrals with rough kernels 2014 Yanping Chen
Yong Ding
+ Singular integral operators in some variable exponent Lebesgue spaces 2020 Vakhtang Kokilashvili
Mieczysław Mastyło
Alexander Meskhi
+ PDF Chat A note on maximal singular integrals with rough kernels 2020 Xiao Zhang
Feng Liu
+ PDF Chat Commutators of Singular Integral Operators Satisfying a Variant of a Lipschitz Condition 2014 Pu Zhang
Daiqing Zhang
+ A note on Singular integral 2021 Arup Maity
Shyam Swarup Mondal
+ Boundedness of singular integrals associated to surfaces of revolution on Triebel–Lizorkin spaces 2014 Wenjuan Li
Zengyan Si
Kôzô Yabuta
+ PDF Chat On the solution of integral equations with strongly singular kernels 1987 A. C. Kaya
F. Erdoğan
+ Uniform boundedness of oscillatory singular integrals with rational phases 2025 Hussain Al-Qassem
Leslie Cheng
Yibiao Pan
+ A note on the singular integral 1937 Tatsuo Kawata
+ PDF Chat A singular integral 1986 Javad Namazi
+ Behavior of bounds of singular integrals for large dimension 2016 Yong Ding
Xudong Lai
+ PDF Chat Weighted estimates for rough singular integrals with applications to angular integrability, II 2020 Feng Liu
Rong ui Liu
Huoxiong Wu
+ PDF Chat Computation of integrals with oscillatory and singular integrands 1981 Bing Yuan Ting
Yudell L. Luke
+ PDF Chat Weak Estimates of Singular Integrals with Variable Kernel and Fractional Differentiation on Morrey-Herz Spaces 2017 Yanqi Yang
Shuangping Tao
+ PDF Chat A note on weighted bounds for rough singular integrals 2017 Andrei K. Lerner
+ PDF Chat Rough singular integrals associated to polynomial curves 2022 Yulin Zhang
Feng Liu