Arithmetic invariants from Sato–Tate moments

Type: Article

Publication Date: 2019-11-01

Citations: 8

DOI: https://doi.org/10.1016/j.crma.2019.11.008

Locations

  • Comptes Rendus Mathématique - View
  • arXiv (Cornell University) - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF
  • Comptes Rendus Mathématique - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Numerical equivalence of ℝ-divisors and Shioda–Tate formula for arithmetic varieties 2022 Paolo Dolce
Roberto Gualdi
+ Numerical equivalence of $\mathbb R$-divisors and Shioda-Tate formula for arithmetic varieties 2020 Paolo Dolce
Roberto Gualdi
+ SATO-TATE TWISTS & ARITHMETIC GROTHENDIECK DUALITY FOR MIXED CHARACTERISTICS LOCAL RINGS (Algebraic Number Theory and Related Topics) 2004 Pierre Matsumi
+ Numerical equivalence of $\mathbb R$-divisors and Shioda-Tate formula for arithmetic varieties 2020 Paolo Dolce
Roberto Gualdi
+ Variations of the Sato-Tate Conjecture 2009 M. Ram Murty
+ Atiyah–Patodi–Singer η $$ \eta $$ -Invariant and Invariants of Finite Degree 2016 A. N. Trefilov
+ Sato-Tate Twists & Arithmetic Grothendieck Duality for Mixed Characteristics Local Rings (代数的整数論とその周辺 研究集会報告集) 2004 Pierre Matsumi
+ Lambda-invariants of Mazur–Tate elements attached to Ramanujan’s tau function and congruences with Eisenstein series 2024 Anthony Doyon
Antonio Lei
+ Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura 2018 Jinbo Ren
+ PDF Chat Faltings height and Néron–Tate height of a theta divisor 2022 Robin de Jong
Farbod Shokrieh
+ On Nekovář's heights, exceptional zeros and a conjecture of Mazur-Tate-Teitelbaum 2014 Kâzım Büyükboduk
+ Sato-Tate Distributions of $y^2=x^p-1$ and $y^2=x^{2p}-1$ 2020 Melissa Emory
Heidi Goodson
+ Sato-Tate Distributions of $y^2=x^p-1$ and $y^2=x^{2p}-1$ 2020 Melissa Emory
Heidi Goodson
+ On Nekov\'{a}\v{r}'s heights, exceptional zeros and a conjecture of Mazur-Tate-Teitelbaum 2014 Kâzım Büyükboduk
+ A connection between polar invariants and roots of the Bernstein-Sato polynomial 1983 Ben Lichtin
+ PDF Chat On motivic and arithmetic refinements of Donaldson-Thomas invariants 2024 Felipe Espreafico
Johannes Walcher
+ PDF Chat Asymptotic formulae for Iwasawa Invariants of Mazur--Tate elements of elliptic curves 2024 Antonio Lei
Robert Pollack
Naman Pratap
+ Études des masures et de leurs applications en arithmétique 2018 Auguste Hébert
+ PDF Chat Sato-Tate distributions 2019 Andrew V. Sutherland
+ Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues 1993 John W. Morgan