𝐢*-algebras, groupoids and covers of shift spaces

Type: Article

Publication Date: 2020-10-30

Citations: 9

DOI: https://doi.org/10.1090/btran/53

Abstract

To every one-sided shift space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif upper X"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathsf {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we associate a cover <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif upper X overTilde"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> <mml:mo>~<!-- ~ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\widetilde {\mathsf {X}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a groupoid <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper G Subscript sans-serif upper X"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">G</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {G}_\mathsf {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper C Superscript asterisk"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi mathvariant="normal">C</mml:mi> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {C^*}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O Subscript sans-serif upper X"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {O}_\mathsf {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We characterize one-sided conjugacy, eventual conjugacy and (stabilizer-preserving) continuous orbit equivalence between <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif upper X"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathsf {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif upper Y"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">Y</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathsf {Y}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in terms of isomorphism of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper G Subscript sans-serif upper X"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">G</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {G}_\mathsf {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper G Subscript sans-serif upper Y"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">G</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">Y</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {G}_\mathsf {Y}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and diagonal-preserving <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Superscript asterisk"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-isomorphism of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O Subscript sans-serif upper X"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {O}_\mathsf {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O Subscript sans-serif upper Y"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">Y</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {O}_\mathsf {Y}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also characterize two-sided conjugacy and flow equivalence of the associated two-sided shift spaces <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda Subscript sans-serif upper X"> <mml:semantics> <mml:msub> <mml:mi mathvariant="normal">Ξ›<!-- Ξ› --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\Lambda _\mathsf {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda Subscript sans-serif upper Y"> <mml:semantics> <mml:msub> <mml:mi mathvariant="normal">Ξ›<!-- Ξ› --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">Y</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\Lambda _\mathsf {Y}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in terms of isomorphism of the stabilized groupoids <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper G Subscript sans-serif upper X Baseline times script upper R"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">G</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> </mml:msub> <mml:mo>Γ—<!-- Γ— --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {G}_\mathsf {X}\times \mathcal {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper G Subscript sans-serif upper Y Baseline times script upper R"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">G</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">Y</mml:mi> </mml:mrow> </mml:msub> <mml:mo>Γ—<!-- Γ— --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {G}_\mathsf {Y}\times \mathcal {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and diagonal-preserving <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Superscript asterisk"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-isomorphism of the stabilized <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper C Superscript asterisk"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi mathvariant="normal">C</mml:mi> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {C^*}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O Subscript sans-serif upper X Baseline circled-times double-struck upper K"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> </mml:msub> <mml:mo>βŠ—<!-- βŠ— --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {O}_\mathsf {X}\otimes \mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O Subscript sans-serif upper Y Baseline circled-times double-struck upper K"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">Y</mml:mi> </mml:mrow> </mml:msub> <mml:mo>βŠ—<!-- βŠ— --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {O}_\mathsf {Y}\otimes \mathbb {K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our strategy is to lift relations on the shift spaces to similar relations on the covers. Restricting to the class of sofic shifts whose groupoids are effective, we show that it is possible to recover the continuous orbit equivalence class of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif upper X"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathsf {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from the pair <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis script upper O Subscript sans-serif upper X Baseline comma upper C left-parenthesis sans-serif upper X right-parenthesis right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(\mathcal {O}_\mathsf {X}, C(\mathsf {X}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the flow equivalence class of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda Subscript sans-serif upper X"> <mml:semantics> <mml:msub> <mml:mi mathvariant="normal">Ξ›<!-- Ξ› --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\Lambda _\mathsf {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from the pair <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis script upper O Subscript sans-serif upper X Baseline circled-times double-struck upper K comma upper C left-parenthesis sans-serif upper X right-parenthesis circled-times c 0 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> </mml:msub> <mml:mo>βŠ—<!-- βŠ— --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">K</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">X</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>βŠ—<!-- βŠ— --></mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(\mathcal {O}_\mathsf {X}\otimes \mathbb {K}, C(\mathsf {X})\otimes c_0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, continuous orbit equivalence implies flow equivalence for this class of shift spaces.

Locations

  • Transactions of the American Mathematical Society Series B - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat On the 𝐾-groups of certain 𝐢*-algebras used in 𝐸-theory 1994 Gabriel Nagy
+ PDF Chat 𝐾-groups generated by 𝐾-spaces 1975 Eric C. Nummela
+ Commutator maps, measure preservation, and 𝑇-systems 2009 Shelly Garion
Aner Shalev
+ PDF Chat On 𝐢*-algebras associated with locally compact groups 1996 M. Bachir Bekka
Eberhard Kaniuth
Anthony Lau
G. Schlichting
+ PDF Chat The Schatten space 𝑆₄ is a 𝑄-algebra 1998 Christian Le Merdy
+ PDF Chat Shift-invariant spaces on the real line 1997 Rong-Qing Jia
+ PDF Chat Group actions and direct sum decompositions of 𝐿^{𝑝} spaces 1989 Rodney Nillsen
+ PDF Chat The set of balanced orbits of maps of 𝑆¹ and 𝑆³ actions 1986 Jan Jaworowski
+ PDF Chat Algebraic properties of the shift mapping 1989 Patrick Dehornoy
+ PDF Chat Frames associated with an abelian 𝑙-group 1992 James J. Madden
+ PDF Chat A note on the existence of 𝐺-maps between spheres 1987 Stefan Waner
+ PDF Chat Free 𝐸-π‘š groups and free 𝐸-π‘š semigroups 1982 Takayuki Tamura
+ PDF Chat Groupoids associated with endomorphisms 1995 Valentin Deaconu
+ PDF Chat On π‘Š* embedding of π΄π‘Š*-algebras 1972 Diane Laison
+ PDF Chat The automorphism group of a shift of finite type 1988 Mike Boyle
Douglas Lind
Daniel J. Rudolph
+ PDF Chat 𝑁𝐾₁ of finite groups 1987 Dennis R. Harmon
+ PDF Chat The group of automorphisms of a class of finite 𝑝-groups 1982 Arye JuhΓ‘sz
+ PDF Chat Separated 𝐺ₐ-actions 1979 Andy R. Magid
+ PDF Chat Subsets close to invariant subsets for group actions 1995 L. Brailovsky
Dmitrii V. αΉ–asechnik
Cheryl E. Praeger
+ PDF Chat A universal space for 𝐺-actions in which a normal subgroup acts freely 1974 Robert L. Rinne