Interpretable deep learning for guided microstructure-property explorations in photovoltaics

Type: Article

Publication Date: 2019-10-01

Citations: 62

DOI: https://doi.org/10.1038/s41524-019-0231-y

Locations

  • npj Computational Materials - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Interpretable deep learning for guided structure-property explorations in photovoltaics 2018 Balaji Sesha Sarath Pokuri
Sambuddha Ghosal
Apurva Kokate
Baskar Ganapathysubramanian
Soumik Sarkar
+ Machine learning for structure-guided materials and process design 2024 Lukas Morand
Tarek Iraki
Johannes Dornheim
Stefan Sandfeld
Norbert Link
Dirk Helm
+ Sensitivity analysis for knowledge discovery in scramjet intake design optimization using deep-learning flowfield prediction 2024 Chihiro Fujio
Hideaki Ogawa
+ PDF Chat Tailoring the mechanical properties of 3D microstructures: A deep learning and genetic algorithm inverse optimization framework 2023 Xiao Shang
Zhiying Liu
Jiahui Zhang
Tianyi Lyu
Yu Zou
+ PDF Chat Explainable machine learning to enable high-throughput electrical conductivity optimization and discovery of doped conjugated polymers 2024 Ji Wei Yoon
Adithya Kumar
Pawan Kumar
Kedar Hippalgaonkar
J. Senthilnath
Vijila Chellappan
+ A Digital Twin to overcome long-time challenges in Photovoltaics 2023 Larry Lüer
Ian Marius Peters
Ana‐Sunčana Smith
Eva Dorschky
Bjoern M. Eskofier
Frauke Liers
Jörg Franke
Martin Sjarov
M. Brossog
Dirk M. Guldi
+ PDF Chat Thermal conductivity modeling using machine learning potentials: application to crystalline and amorphous silicon 2019 Xin Qian
Shiyu Peng
Xiaobo Li
Yong Wei
Ronggui Yang
+ PDF Chat Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies 2021 Marko Čanađija
+ PDF Chat SANE: Strategic Autonomous Non-Smooth Exploration for Multiple Optima Discovery in Multi-modal and Non-differentiable Black-box Functions 2024 Arpan Biswas
Rama K. Vasudevan
Rohit Pant
Ichiro Takeuchi
Hiroshi Funakubo
Yongtao Liu
+ Assessing the Frontier: Active Learning, Model Accuracy, and Multi-objective Materials Discovery and Optimization 2019 Zachary del Rosario
Matthias Rupp
Yoolhee Kim
Erin Antono
Julia Ling
+ Accurate prediction of structural and mechanical properties on amorphous materials enabled through machine-learning potentials: A case study of silicon nitride 2025 Ganesh Kumar Nayak
Prashanth Srinivasan
Juraj Todt
R. Daniel
Paolo Nicolini
David Holec
+ Neural networks for a quick access to a digital twin of scanning physical properties measurements 2022 Kensei Terashima
Pedro Baptista de Castro
Miren Garbiñe Esparza Echevarria
Ryo Matsumoto
Takafumi D. Yamamoto
Akiko Saito
Hiroyuki Takeya
Yoshihiko Takano
+ PDF Chat ∂PV: An end-to-end differentiable solar-cell simulator 2021 Sean Mann
Eric Fadel
Samuel S. Schoenholz
Ekin D. Cubuk
Steven G. Johnson
Giuseppe Romano
+ PDF Chat Machine Learning with Knowledge Constraints for Process Optimization of Open-Air Perovskite Solar Cell Manufacturing 2021 Zhe Liu
Nicholas Rolston
Austin C. Flick
Thomas W. Colburn
Zekun Ren
Reinhold H. Dauskardt
Tonio Buonassisi
+ PDF Chat Deep generative modeling for mechanistic-based learning and design of metamaterial systems 2020 Liwei Wang
Yu‐Chin Chan
Faez Ahmed
Zhao Liu
Ping Zhu
Wei Chen
+ Machine learning for accelerating the discovery of high performance low-cost solar cells: a systematic review 2022 Satyam Bhatti
Habib Ullah Manzoor
Bruno Michel
Ruy S. Bonilla
Richard Abrams
Ahmed Zoha
Sajjad Hussain
Rami Ghannam
+ PDF Chat PearSAN: A Machine Learning Method for Inverse Design using Pearson Correlated Surrogate Annealing 2024 Michael Bezick
Blake Wilson
Vaishnavi Iyer
Yuheng Chen
Vladimir M. Shalaev
Sabre Kais
Alexander V. Kildishev
Alexandra Boltasseva
Brad Lackey
+ Polymers for Extreme Conditions Designed Using Syntax-Directed Variational Autoencoders 2020 Rohit Batra
Hanjun Dai
Tran Doan Huan
Lihua Chen
Chiho Kim
Will R. Gutekunst
Le Song
Rampi Ramprasad
+ Polymers for Extreme Conditions Designed Using Syntax-Directed Variational Autoencoders 2020 Rohit Batra
Hanjun Dai
Tran Doan Huan
Lihua Chen
Chiho Kim
Will R. Gutekunst
Le Song
Rampi Ramprasad
+ Autonomous Optimization of an Organic Solar Cell in a 4-dimensional Parameter Space 2023 Tobias Osterrieder
F. Schmitt
Larry Lüer
Jerrit Wagner
Thomas Heumüller
Jens Hauch
Christoph J. Brabec

Works That Cite This (9)

Action Title Year Authors
+ PDF Chat Machine Learning–Assisted Design of Material Properties 2022 Sanket Kadulkar
Zachary M. Sherman
Venkat Ganesan
Thomas M. Truskett
+ PDF Chat A digital twin to overcome long-time challenges in photovoltaics 2024 Larry Lüer
Ian Marius Peters
Ana‐Sunčana Smith
Eva Dorschky
Bjoern M. Eskofier
Frauke Liers
Jörg Franke
Martin Sjarov
Matthias Brossog
Dirk M. Guldi
+ PDF Chat Adoption of Image-Driven Machine Learning for Microstructure Characterization and Materials Design: A Perspective 2021 Arun Baskaran
Elizabeth J. Kautz
Aritra Chowdhary
Wufei Ma
Bülent Yener
D. Lewis
+ PDF Chat Neural-network model for force prediction in multi-principal-element alloys 2021 Rahul Singh
Preeti Singh
Ashok Sharma
Onur Rauf Bingöl
Aditya Balu
Ganesh Balasubramanian
Adarsh Krishnamurthy
Shahariar Sarkar
D. D. Johnson
+ EBSD Grain Knowledge Graph Representation Learning for Material Structure-Property Prediction 2021 Chao Shu
Zhuoran Xin
Cheng Xie
+ Interpretable and synergistic deep learning for visual explanation and statistical estimations of segmentation of disease features from medical images. 2020 Sambuddha Ghosal
Pratik Shah
+ Deep Generative Models Strike Back! Improving Understanding and Evaluation in Light of Unmet Expectations for OoD Data 2019 John J. Just
Sambuddha Ghosal
+ PDF Chat EBSD Grain Knowledge Graph Representation Learning for Material Structure-Property Prediction 2021 Chao Shu
Zhuoran Xin
Cheng Xie
+ A deep-learning toolkit for visualization and interpretation of segmented medical images 2021 Sambuddha Ghosal
Pratik Shah